BİR ALT EKSTREMİTE ORTEZİNİN KİNETİK VE KİNEMATİK ANALİZİ

BİTİRME PROJESİ

Mürüvvet İMRENK

Projeyi Yöneten
Prof. Dr. Seçil Erim

Aralık, 2011
İZMİR
TEZ SINAV SONUÇ FORMU

Bu çalışma … / … / …. günü toplanan jürimiz tarafından BİTİRME PROJESİ olarak kabul edilmiştir.

Yarıyıl içi başarı notu 100 (yüz) tam not üzerinden ……… (…………………..) đır.

Makine Mühendisliği Bölüm Başkanlığına,

………………….. numaralı ………………… jürimiz tarafından … / … / …. günü saat ……
da yapılan sınavda 100 (yüz) tam not üzerinden …… almıştır.

ONAY
TEŞEKKÜR

Bir alt ekstremite ortezinin kinetik ve kinematik analizi konusunda hazırlamış olduğum bitirme tezinde bana rehberlik eden ve benden desteğini esirgemeyen Doç. Dr. Binnur Gören KIRAL’a teşekkür ederim.

Teknik kaynak bulamamda yardımcı olup beni yönlendiren ve her konudaki yardımcılarından dolayı arkadaşım Murat KARAGÖZ’e teşekkür ederim.

Mürüvvet İMRENK
ÖZET

Alt ekstremite ortezlerinin amaçları; yürümeye yardımcı olmak, hareket kontrolü, yükü azaltmak, ağrıyi azaltmak olduğunu söyleyebiliriz.

İlk bölümde biyomekaniğin tanımlanmış ve çalışma alanları açıklanmıştır.

İkinci bölümde yürüme siklusu, yürümede enerjideki en az seviyede kullanabilmek için nelerin gerektiğini açıklanmıştır.

Üçüncü bölümde yürüme verilerinin nasıl edildiğini, kinetik ve kinematik analizlerin alt ekstremitede nasıl uygulandığını anlatılmıştır.

Dördüncü bölümde ortezlerin tıptaki öneminden ve tarihi gelişiminden bahsedilmiştir.

Son bölümde ise yürüme amacı bir alt ekstremite ortezinin SolidWorks Motion programı yardımıyla kinetik ve kinematik analizleri yapılmıştır. İlk olarak yürüme analizi laboratuarlarında elde edilen kinematik veriler (yürüme siklusunda boyunca sürekli değişen eklemler) ortezde uygulanıp hareket ettirilmiştir. Daha sonra bu hareket üzerinden zamana bağlı olarak ortezin aksal hız, aksal yer değiştirilmesi, motorların güç tüketimi ve eklemlerin tepki kuvvetleri hesaplanıp yürüme fazlarının amaçlarına göre yorumu yapılmıştır.
İÇİNDEKİLER

1. BİYOMEKANİK 1
 1.1 Biyomekaniğin Tanımı ... 1
 1.2 Biyomekaniğin Tarihi Gelişimi .. 1
 1.3 Biyomekaniğin Tıp Bilimine Katkıları .. 3

2. YÜRÜME 4
 2.1 Yürüme Siklusu .. 4
 2.1.1 Basma Fazı ve Evreleri ... 5
 2.1.2 Salınma Fazı ve Evreleri .. 8
 2.1.3 Çift Destek Fazı ... 9
 2.2 Yürüme Siklusunda Zaman Dağılımı .. 10
 2.3 Yüreğinin İncelenmesinde Kullanılan Fizik ve Biyomekanik Terimler ... 11
 2.4 Yürümenin Önkoşulları .. 13
 2.4.1 Statik Denge ... 13
 2.4.2 Dinamik Denge .. 14
 2.4.3 Vücutun İlerletilmesi ... 15
 2.4.4 Şok Absorpsiyonu .. 18
 2.4.5 Yürümede Enerji Tüketimi ... 18

3. YÜRÜME HAREKETİNİN FİZYOLOJİK AÇIDAN İNCELENMESİ 21
 3.1 Yürüme Analizinin Önemi .. 22
 3.2 Yürüme Analizi Laboratuvarında Kullanılan Değerlendirme Yöntemleri ... 22
 3.2.1 Gözleme Dayalı Analiz .. 22
 3.2.2 Kinematik Analiz .. 23
 3.2.3 Kinetik Analiz .. 24
 3.3 Kinematik Verilerin Analizi ve Modellenmesi .. 25

4. ORTEZ 25
 4.1 Ortez ve Protezin Tanımı ... 25
 4.2 Ortezin Kullanım Alanları ... 25

IV
4.3 Ortezlerin Genel Kullanım Amaçları ... 26
4.4 Alt Ekstremite Ortezleri ... 27
 4.4.1 Alt Ekstremitede Ortezlerinin Kullanım Amaçları ... 27
 4.4.2 Alt Ekstremitenin Biyomekanik İşlevleri... 27
 4.4.3 Fonksiyonlarına Göre Alt Ekstremite Ortezi Çeşitleri ... 28
4.5 Dünyada Ortez Alanında Gelişimeler ... 29
5. SOLIDWORKS MOTION 32
 5.1 Montajın Hareket Etüdü İle Elde Edilen Hareketindeki Fazlar 34
 5.2 SolidWorks Hareket Etüdü İle Hesaplanan Sonuç ve Grafikler 35

TEMEL KAVRAMLAR 41
KAYNAKLAR 43

TABLO LİSTESİ

Tablo 2.1 Yürüme Siklusundaki Fazların Yüzdelere Göre Süreleri..10
Tablo 2.2 Normal Yürüyüşe Ortalama Değerler...12
Tablo 4.1 Alt Ekstremite Ortezinin Dört Etkinlik Prensibi...28
Tablo 4.2 Alt Ekstremite Ortezlerinin Fonksiyonlarına Göre Sınıflandırılması................. 28
ŞEKİL LİSTESİ

Şekil 1.1 Borelli’nin “De Motu Animalium (On The Movements of Living Things)”
Kitabından……………………………………………………………………………………………..1

Şekil 2.1 Yürüme Siklusu………………………………………………………………………………4
Şekil 2.2 Basma Fazının Evreleri…………………………………………………………………5
Şekil 2.3 Topuk Teması………………………………………………………………………………5
Şekil 2.4 Ayağın Tam Teması………………………………………………………………………..6
Şekil 2.5 Basma Fazı Ortası…………………………………………………………………………7
Şekil 2.6 Topuk Ayrılışı………………………………………………………………………………7
Şekil 2.7 Parmak Ayrılışı………………………………………………………………………………8
Şekil 2.8 Salınma Fazının Evreleri…………………………………………………………………8
Şekil 2.9 Çift Destek Fazı………………………………………………………………………………10
Şekil 2.10 Yürüme Siklusundaki Fazlara Ait Konumlar………………………………………………11
Şekil 2.11 Adım ölçülerleri………………………………………………………………………………11
Şekil 2.12 Basma Fazı Ortası Kuvvet Diyagramı…………………………………………………13
Şekil 2.13 İç ve Dış Momentlerin Diyagramı………………………………………………………13
Şekil 2.14 Bilgisayarlı Denge Ölçüm ve Egzersiz Cihazı ve sağlıklı denekte gözlenen destek
alanı merkezi değişimleri………………………………………………………………………..14
Şekil 2.15 Topukta Dönme………………………………………………………………………………15
Şekil 2.16 Ayak Bileğinde Dönme……………………………………………………………………16
Şekil 2.17 Ön Ayakta Dönme…………………………………………………………………………16
Şekil 2.18 Salınım öncesi diz fleksiyonu………………………………………………………………17
Şekil 2.19 Salınım fazı kalça fleksiyonu………………………………………………………………17
Şekil 2.20 Salınım fazı diz ekstansiyonu………………………………………………………………17
Şekil 2.21 Pelvik rotasyon………………………………………………………………………………19
Şekil 2.22 Pelvik Düşme………………………………………………………………………………19
Şekil 2.23 Diz Fleksiyonu………………………………………………………………………………19
Şekil 2.24 Ayak Bileği Plantar Fleksiyonu…………………………………………………………20
Şekil 2.25 Ayak Bileği Rotasyonu………………………………………………………………………20
Şekil 2.26 Lateral Pelvik Deplasman

Şekil 3.1 Gözleme dayalı analiz

Şekil 4.1 İlk bacak desteklerinden biri

Şekil 4.2 Anonymous’un Almanya’da Landes Müzesi’nde sergilenen tablosu

Şekil 4.3 Eski genu valgum ortezi

Şekil 4.4 Modern Genu Varum Valgum Ortezi

Şekil 4.5 Uluslar arası Protez-Ortez Derneği Kurucu Üyeleri

Şekil 5.1 Montajın Hareket Etildiği İle Elde Edilen Hareketindeki Fazlar

Şekil 5.2 Açısal Yer Değişimi Grafiği

Şekil 5.3 Açısal Hız Değişimi Grafiği

Şekil 5.4 Motorlardaki Zamana Bağlı Güç Tüketimi Grafiği

Şekil 5.5 Kalça Destek Parçasıyla Uyluk Parçası Birbirine Bağlayan Mafsalda Oluşan X ve Y Eksenindeki Tepki Kuvvetleri ve Bileşke Kuvvetlerinin Zamana Bağlı Değişimi

Şekil 5.6 Uyluk Parçasıyla Baldr Parçası Birbirine Bağlayan Mafsalda Oluşan X ve Y Eksenindeki Tepki Kuvvetleri ve Bileşke Kuvvetlerinin Zamana Bağlı Değişimi

Şekil 5.7 Baldr Parçasıyla Ayak Bileği Destek Parçasını Birbirine Bağlayan Mafsalda Oluşan X ve Y Eksenindeki Tepki Kuvvetleri ve Bileşke Kuvvetlerinin Zamana Bağlı Değişimi
1. BİYOMEKANİK

1.1 Biyomekaniğin Tanımı

Biyomekanik, biyoloji ve mühendislik bilimlerinin, yaşayan canlılar üzerinde uygulama alanıdır. Biyomekanik çalışmalarında, mühendislik yöntemleri de kullanılarak, canlıların nasıl hareket ettikleri, hareketlerinin nasıl kontrol edildiği ve hareket sırasında değişik bölümlerde oluşan kuvvet sisteminin etkisi incelenmekte, canlı ve cansız dokular üzerinde zorlanma durumları incelenmekte ve tedavi yöntemleri test edilmektedir[6].

1970'lerin başlarında ortaya çıkan en iyi tanımlamalarından biri Herbert Hetze tarafından dile getirilmiştir: "Biyomekanik, biyolojik sistemlerin biçim ve işlevlerinin mühendislik yöntemleri kullanılarak incelenmesidir."

1.2 Biyomekaniğin Tarihi Gelişimi

Şekil.1 Borelli’nin “De Motu Animalium (On The Movements of Living Things)” Kitabından

Bir başka önemli araştırma da Louisiana Üniversitesi Klinik Biyomekanik Laboratuvarı araştırmacıları tarafından yürütülmektedir. Louisiana da yapılan çalışma 900‘ün üzerinde omurga rahatsızlıklarından şikayet eden hastanın hareketlerini takip ederek gerçekleştirmektedir. Şikayetleri yakının olan hastalar ortak gruplara bölenerek üzerine yerleştirilen ve veri kaydedebilen algılayıcılar ile günlük hareketleri 5 yıl süreyle takip
edilmiş ve temelde tüm hastalarda rahatsızlığın yanlış fiziksel hareketler sebebiyle anlık hareket merkezindeki ani değişikliklerden kaynaklandığı gözlemlenmiştir. [7]

1.3 Biyomekaniğin Tıp Bilimine Katkıları

Biyomekanik, aslında tıp biliminin ve teknolojinin bütün modern gelişimine katkıda bulunmuştur. Moleküller biyoloji biyomekanikte biraz uzaklaşmış gibi görünse de onu derinlemesine incelediğinde moleküllerin oluşum, tasarım, fonksiyon ve üretimin mekaniğini iyi anlatmak gerektiğini görülmektedir.

Travma, yaralanma ve rehabilitasyon giderek modern toplumda daha önemli hale gelmektedir. İnsanlar otomobil kazalarında yaralandıklarından bu durumun toplum üzerindeki ekonomik etkisi de büyütür.

Daha geniş bir çerçevede modern biyomekaniğin tıbbi en önemli katkısı fizioloji bilimini anlamadaki başarısından kaynaklanmaktadır.[8]
2. YÜRÜME

İnsanın normal yürüme hareketi, ağırlık merkezinin öne doğru hareket etmesini sağlayan ekstremitelerde ve gövdede Meydana gelen bir dizi ritmik ve değişken hareketlerin tümüdür. Bazı özelliklerin sıralanması ile insanın yürüme hareketi daha açık bir şekilde tanımlanabilir.

Yürüme, yaşamın çok basit bir parçası gibi görünmekle birlikte son derece karmaşık bir hareketler zinciridir. Uzun süre yorulmadan yürüyebilmek için beyin, omurilik, periferik sinirler, kaslar, kemik ve eklemler birlikte çalışmalı, ekmek hareketleri, kasılmının zamanı ve gücü yeterli olmalıdır.

İnsanların yürüyüşleri az da olsa birbirinden farklıdır; ancak aşağıda belirileceği gibi, bu farklılar pek de önem taşımamaktadır.

2.1 Yürüme Siklusu

Yürüme sırasında, yürürken gövdeyi öne doğru ilerletebilmek için bir ekstremitedeki topuğun yere değme amı ile aynı topuğun tekrar yere değme amı arasında bacaklarla bir dizi hareket oluşur ve bu hareketler sürekli tekrarlanır. Belirli bir düzenle tekrarlanan bu hareket zincirine, yürüme siklusu adı verilir.

İnsan yürürken önce bir bacağını öne atar; onun üzerine bastıktan sonra diğerini yerden kaldırır ve ilerletir. Her ekstremitenin yürüme siklusu; bir bacakın yerde olduğu süre, basma fazından, havada olduğu süre ise salınmaz fazından oluşur.
2.1.1 Basma Fazı ve Evreleri

Basma fazı, duruş fazı olarak da adlandırılır. Bu faz, topuk yere dediğinde başlar ve aynı ayağın parmakları yerden ayrılışında sona erer.

2.1.1.1 Topuk Teması

2.1.1.2 Ayağın Tam Teması

Yer tepkimesi kuvveti vektörünün yarattığı dış momentler kalçada ve dizde fleksiyon, ayak bileğinde plantar fleksiyondur.

Şekil 2.4 Ayağın Tam Teması

2.1.1.3 Basma Fazı Ortası

Yer tepkimesi kuvveti vektörü kalçanın ortasından, dizin arkasından, ayak bileğinin önünden geçer.
2.1.1.4 Topuk Ayrılışı

Yürüme siklusu % 30-50 dir. Tek basma fazı bitmektedir. Kalça 10° ekstansiyonu vardır, diz ekstansiyonu fleksiyona gelir, ayak bileği plantar fleksiyonu vardır. Amaç, bacağın yerden kesilmesidir. Vücut ağırlık merkezinin yüksekliği ve yana kayması azalır, Yer tepkimesi kuvveti vektörü kalçanın arkasında, dizin ve ayak bileğinin önündedir

2.1.1.5 Parmak Ayrılışı

Bu dönemde gövde ağırlığı ekstremite üzerinden kalkar.AMAç, bacağı salınma hazırlamaktır. Ayak yeri terk etmeden önce yer tepkimesi kuvveti vektörü dizin arkasına geçer. Ayak parmakları yerden kalkınca yer tepkimesi kuvveti vektörü azalır ve kaybolur.

![Şekil 2.7 Parmak Ayrılığı](image)

Topuğun yerden ayrılması ile parmakların yerden ayrılması arasında geçen zamanı, itme fazı olarak ta incelemek mümkündür.

2.1.2 Salınma Fazı ve Evreleri

Bu faz, parmakların yerden ayrılmasıyla başlar ve topuğun yere değişmesiyle sona erer.
2.1.2.1 Hızlanma

2.1.2.2 Salınım Fazı Ortası

2.1.2.3 Salınım Fazı Sonu

Yürüme siklusu % 87-100 salınan bacak basan bacağın önüne geçtiğinde, başlar; ayağın yere değdiği ana dek sürer. Kalça fleksiyonda, diz ekstansiyonda, ayak bileği ise nötral pozisyondadır. Amaç, ayağın yere basmaya hazırlanmasıdır. Dizin tam ekstansiyonu ile adım uzunluğu artar.

Topuk yere değmeden hemen önce ayağı kontrol altında almak için bacağı öne doğru hareketi frenlenir. Orta hızlanma fazından sonra ortaya çıkan bu durum, yavaşlama durumudur.

2.1.3 Çift Destek Fazı

Normal yürüyüş sırasında her iki ekstremite de aynı anda yerle temas halindeyken çift destek sağlanır. İki tarafı bu destek, bir ayağın geçiş hali ile parmağın yere ayrılıması arasında ve diğer ayağın topuğunun yere değmesi ile bu ayağın yere tam teması arasında meydana gelir. Bu desteğin süresi, yürüyüş hızına bağlıdır.

eklemleri üzerindenöne doğru aktarır. Bu esnada havadaki bacak ilerler ve yere basmaya hazırlanır.

Şekil 2.9 Çift Destek Fazı

2.2 Yürüme Siklusunda Zaman Dağılımı

Her bir yürüme fazı sırasında gereken nispi süreler, aşağıda gösterilmiştir.

- Başma fazı, siklusun % 60’ını,
- Salınma fazı, siklusunun % 40’ını,
- Çift destek fazı; siklusun % 11’ini oluşturur.

Yürüme hızının yüksek olması, salınma fazında geçen sürenin nispi artışını ifade eder. Bunun yanı sıra, hızın az olması, basma fazında geçen sürenin nispi artışını anlamına gelir.

Tablo 2.1 Yürüme Siklusındaki Fazların Yüzdelere Göre Süreleri

<table>
<thead>
<tr>
<th>Sıra</th>
<th>Fazlar</th>
<th>Yüzde</th>
<th>Zaman(sn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Başlangıç</td>
<td>%0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>İlk Değme Fazı</td>
<td>%2</td>
<td>0,0404</td>
</tr>
<tr>
<td>3</td>
<td>Yüklenme Fazı</td>
<td>%10</td>
<td>0,202</td>
</tr>
<tr>
<td>4</td>
<td>Basma Orta Fazı</td>
<td>%30</td>
<td>0,606</td>
</tr>
<tr>
<td>5</td>
<td>Basma Sonu Fazı</td>
<td>%50</td>
<td>1,01</td>
</tr>
<tr>
<td>6</td>
<td>Salınım Öncesi Fazı</td>
<td>%60</td>
<td>1,212</td>
</tr>
<tr>
<td>7</td>
<td>Erken Salınım Fazı</td>
<td>%73</td>
<td>1,4746</td>
</tr>
<tr>
<td>8</td>
<td>Salınım Orta Fazı</td>
<td>%87</td>
<td>1,7574</td>
</tr>
<tr>
<td>9</td>
<td>Salınım Sonu Fazı</td>
<td>%100</td>
<td>2,02</td>
</tr>
</tbody>
</table>
2.3 Yürümenin İncelenmesinde Kullanılan Fizik ve Biyomekanik Terimler

Adım genişliği: Her iki ayağın dikey ara mesafesidir.
Çift adım uzunluğu: Aynı ayağın iki topuk vuruşu arasındaki mesafedir.
Ayak açısı: Gidilen yön ile ayağın ortasından geçen çizgi arasındaki açıdır.
Hız: Yavaş yürüş sırasında dakikada yaklaşık 70 adım atılırken bu sayı, hızlı yürüş sırasında 130”a kadar çıkabilir. Dakikada yaklaşık 90 adım atan yetişkin bir insan, saatteortalama 4 km yol yürür.

Yürüme siklusunun süresi, yürümeye hızına bağlıdır [9]. Günlük hayatta rahat yürümeye hızı 80 m/dk’dır. Dolaysıyla bir yürümeye siklusu süresi ise 1 saniyeden biraz fazladır. Hız artırıldığında çift destek fazı kısalır ve koşma hareketi başlamış olur.

Tablo 2.2 Normal yürüşte ortalama değerler

<table>
<thead>
<tr>
<th>Normal yürüşte ortalama değerler</th>
<th>Erkekler</th>
<th>Kadınlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adım uzunluğu (cm)</td>
<td>79</td>
<td>66</td>
</tr>
<tr>
<td>Çift adı uzunluğu (cm)</td>
<td>158</td>
<td>132</td>
</tr>
<tr>
<td>Dakikadaki adım sayısı (adım/dk)</td>
<td>117 (60-132)</td>
<td>117 (60-132)</td>
</tr>
<tr>
<td>Hız (m/sn)</td>
<td>1.54</td>
<td>1.31</td>
</tr>
<tr>
<td>Adım genişliği (cm)</td>
<td>8.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Ayak açısı</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Yer tepkimesi kuvveti: Newton'un üçüncü kanununa göre ayakta duran insannın yerde oluşturduğu ağırlık kuvvet vektörüne yer de büyüklüğü aynı, yönü ters bir kuvvet vektörü ile karşılık verir. Buna yer tepkimesi kuvveti vektörü denir. Yürürken yer tepkimesi kuvveti, vücut ağırlığı ve hareketi sağlayan kas kuvvetlerinin bileşkesine karşı oluşur ve yürümeye sırasında yönü ve büyüklüğü sürekli değişir.
Dış moment: Yer tepkimesi kuvvet vektörü kalça, diz ve ayak bileğini harekete zorlar. Eklemlerde oluşan bu etkiye dış moment denir.

İç moment: Dış momente karşı koymak, stabilite veya hareket sağlamak amacıyla kas kaslıncaya eklemdede oluşan momenttir.

2.4 Yürümenin Önkoşulları

1. Denge: Ayakta dengeli dik durabilmek ve hareket sırasında dengeyi koruyabilmek gerekir.
2. İlerleme: Kas gücü ile vücudun öne doğru ilerletilmesi gerekir.
3. Şok absorpsiyonu: Ayak yere değdiğinde vücud ağırlığının neden olduğu darbeyi amortisör etkisi ile azaltmak gerekir.

2.4.1 Statik Denge

İnsanın ayakta dik durabilmesi için vücud ağırlık merkezinden yere doğru inen vektörün, destek alanı merkezinden geçmesi gerekir. Frontal düzlemde bu vektör gövde ağırlığının iki ekstremite arasında eşit olarak paylaşılması halinde destek alanı merkezin tam ortasına düşer. Ancak gerçekten destek alanı merkezi orta hattın 6 mm kadar sağa kayar. Sağ bacak...
sola göre biraz daha fazla yüklenir. Femur boynundaki 120° varus açısı, dizdeki 5-7 derecelik valgus açısı ve ayakların 7 derece dışa dönük durması sayesinde destek alanı genişler, stabilite artar. Ayakta dik dururken vücuda gözle fark edilmeyen salınım olur. Gerek sajital, gerekse de frontal düzlemlerde gövde ağırlığı yavaş ancak sürekli olarak saniyede 4-6 kez bir bacaktan diğerine aktarılır. Dengeyi değerlendirirken vücudun ağırlık merkezinin yere izdüştüğünü incelendiğinde destek alanı merkezinin ön arkaya 8 mm, her iki yana ise 5 mm hareket ettiği saptanır.

Şekil 2.14 Bilgisayarlı Denge Ölçüm ve Egzersiz Cihazı ve sağlıklı denekte gözlenen destek alanı merkezi değişimleri

2.4.2 Dinamik Denge

2.4.3 Vücutun İlerletilmesi

2.4.3.1 Vücutun İlerletilmesinde basma fazındaki ayağın hareketleri (Rockers)

2.4.3.1.1 Topukta dönme (Heel rocker)

Şekil 2.15 Topukta Dönme

2.4.3.1.2 Ayak Bileğinde Dönme (Ankle rocker)

2.4.3.1.3 Ön Ayakta Dönme (Forefoot rocker)

Yer tepkimesi kuvvet vektörü ön ayağa ulaştuğunda topuk yerden kalkar, ayak bileğindeki dönme biter, önayakta dönme başlar. Vücut ağırlık merkezi destek alanı merkezinin önüne düşmeye başladıguna ilerleme hızlanır. Triseps kasılarak ayak bileğinde plantar fleksiyon yaratır, güçlü bir itici kuvvet sağlar. Burada artık gövde kütlesi uzun bir kalıraç kollunun ucundaki pasif bir ağırlık gibidir ve diğer ayak yere basana kadar düşmesini önleyecek hiçbir kuvvet yoktur.

2.4.3.2 Salınım Fazındaki Bacağın Vücut İlerlemesine Katkısı

Havadaki bacağın ön salınımlı ilerleme için ek bir güç kaynağıdır. Basma fazındaki bacağın gövdeyi iletici etkisi azalırken salınımındaki bacağın yetişip ön geçmesi vücut ağırlık merkezini ön düşürür. Yer tepkimesi kuvvet vektörü tekrar büyüyerek gövdenin ilerlemesi devam eder.
Salınım öncesi diz fleksiyonu: Karşı ayak yere bastığında ayağa binen yük, gastroknemius konsantrik kasılarak ayak bileğinde plantar fleksiyon ve diz de fleksiyon oluşturur.

![Şekil 2.18 Salınım öncesi diz fleksiyonu](image1)

Salınım fazı kalça fleksiyonu: Diz fleksiyonunu takiben kalça aktif olarak fleksiyona getirilir. Böylece havadaki bacak öne ilerler.

![Şekil 2.19 Salınım fazı kalça fleksiyonu](image2)

Salınım fazı diz ekstansiyonu: Salınım fazı sonunda dizin ekstansiyonu adım uzunluğunu arttırap, mümkün olan en uzak noktaya basabilmeyi sağlar.

![Şekil 2.20 Salınım fazı diz ekstansiyonu](image3)
2.4.4 Şok Absorpsiyonu

2.4.5 Yürümede Enerji Tüketimi

2.4.5.1 Vücut Ağırlık Merkezinin Yer Değiştirmesini Azaltan Hareketler

Yürüme esnasında vücut ağırlık merkezinin yer değişimlerini azaltan altı hareket tanımlanmıştır. Determinant olarak adlandırılan bu hareketler sayesinde vücut ağırlık merkezinin her düzlemdeki salınımını en aza indirilerek tekerek merkezin hareketli gibi ilerlemesi sağlanır, ani yön değişiklikleri önlenir. Bu sayede enerji tüketimi azaltılır.
2.4.5.1.1. Pelvik Rotasyon: Her adımda transvers düzlemde sahneyim fazındaki pelvis öne 4° rotasyon yapar. Pelvik rotasyon sayesinde vücut ağırlık merkezinin çift destek fazındaki alcılığı azalır, kalça eklemi öne doğru ilerlediğinden adım uzunluğu artar.

Şekil 2.21 Pelvik rotasyon

2.4.5.1.2. Pelvik Düşme: Geçmişte pelvik tilt olarak tanımlanan bu hareket frontal düzlemde gerç克莱ştiğinden artık pelvik düşme diye adlandırılmaktadır. Sahneyim fazında pelvisin frontal düzlemde yere doğru alcılığı sayesinde tek basma fazında vücut ağırlık merkezinin yükselmesi azalır. Sahneyim fazındaki bacağın pelvisi alcılıken ayağın yere sürünmemesi için diz ve ayak bileğinde fleksiyon gerekir. Pelvik düşme her iki yönde 4° dir.

Şekil 2.22 Pelvik Düşme

2.4.5.1.3. Diz Fleksiyonu: Basmanın yüklenme fazında diz fleksiyonu oluşarak vücut ağırlık merkezinin yükselmesi azalır.

Şekil 2.23 Diz Fleksiyonu
2.4.5.1. 4. Ayak Bileği Plantar Fleksiyonu: İlk değme fazında başlayıp ayağın yere tam değdiği ana kadar oluşan ayak bileği plantar fleksiyonu vücut ağırlık merkezinin alçalmasını azaltır. Basma fazı sonunda oluşan plantar fleksiyon da aynı şekilde vücut ağırlık merkezinin alçalmasını azaltır.

![Şekil 2.24 Ayak Bileği Plantar Fleksiyonu](image)

2.4.5.1.5. Ayak ve Ayak Bileği Rotasyonu: Basma ortası fazından sonra vücut ağırlık merkezi alçalmaya başlarken ayak bileğinde oluşan plantar fleksiyon ve ayak supinasyonu bacak boyunun kısalmasını önleyerek vücut ağırlık merkezinin alçalmasını azaltır.

![Şekil 2.25 Ayak ve Ayak Bileği Rotasyonu](image)

Eğer insanın bacakları sopa gibi hareket etsaydı vücut ağırlık merkezi yer değişimi 5 cm yerine 9,5 cm olacak ve yürümede enerji tüketimi çok artacaktı.

2.4.5.1.6. Lateral Pelvik Deplasman: Pelvis basin bacağın üzerine kayarak vücut ağırlık merkezinin yer değişimini azaltır.

![Şekil 2.26 Lateral Pelvik Deplasman](image)
Bu altı hareket sayesinde frontal ve transvers düzlemlerde vücut ağırlık merkezi yer değişimi azalarak 9,5 cm den 5 cm ye iner.

2.4.5.2 Potansiyel - Kinetik Enerji Değişimi

3. YÜRÜME HAREKETİNİN FİZYOLOJİK AÇıDAN İNCELENMESİ

Normal yürümeyi karmaşıklığı ve çıplak gözle değerlendirilmesinin gücü bilim adamlarını ayrıntılı ve güvenilir inceleme yöntemleri geliştirmeye itmiştir.

Yürüme analizi; yürümeyin sayısal olarak değerlendirilmesi, tanımlanması ve yorumlanmasıdır. Her ne kadar birçok yürümeyi deneyimli protetist ve ortetistin gözle yaptığı muayeneleme ve yanıyorulanın sayısal olarak yorumlamak, kaydedip daha sonra yeniden değerlendirilerek yapılan tedavi, ortez ve protezlemenin etkinliğini nesnel biçimde ortaya koymak için yürume analizi teknolojisi gerekir.

Modern yürume analizi laboratuvarlarında, hastanın yürüyüşi, önce gözle bakarak ve video kayıtlarıyla değerlendirilir. Daha sonra hastanın gövdesinde uygun noktalara bağlanan verici veya yansıtıcular aracılığıyla hareket verileri bilgisayara aktarılır; ayrıca yere monte edilmiş bir kuvvet platformuna basarken ölçülen yer tepkimesi kuvveti değişikleri de bilgisayara yüklenir.

Gelişmiş laboratuvarlarda bu verilere ek olarak dinamik elektromyografi ve enerji tüketimi ölçümleri de yapılır. Tüm bu bilgiler özel yazılımlar aracılığıyla sayısal verilere
dönüştürülür. Son olarak, veriler, hastanın klinik durumu ile birlikte değerlendirilerek hekim tarafından yorumlanır ve rapor yazılır.

Yürüme analizinde kullanılan teknoloji çok karmaşıktır. Bu alanda çalışan hekim ve biyomedikal mühendislerinin kullanılan sistemsin teknik özelliklerini çok iyi bilmeleri ve elde edilen sonuçları yorumlayabilmeleri gerekliyor. Son yıllarda teknoloji geliyor, test süresi kısaltılıyor ve giderek birçok hastalığın tanısı tedavi cihazlanması konusunda önemli kazanımlar elde ediyor.

3.1 Yürüme Analizinin Önemi

Deneyimli hekimler bile yürüyü gözle değerlendirmekte güçlük çekerler. İnsan gözü saniyede 12–14 adet görüntü algılayabildiği için yürüme sırasında milisaniyeler içinde oluşan hareketler tam olarak değerlendirilemez.

Ayrıca yürüme sadece eklem hareketlerinden ibaret olmayıp gözle analiz edilecek kuvvet, moment ve kas aktivitelerini de içerir. Doğru tanı ve başarılı bir tedavi için normal yürüme bilinmeli, anormal olandan ayırt edilmeli, yürüme bozan ana nedeni ve bu nedeni kompanse etmek için yapılan hareketler analiz edilmelidir. Bunun için yürümenin tüm bileşenlerini eksiksiz kaydedebilmek, sayısal veriye dönüştürecek, karşılayamayan tekrar incelemeye, tedavi girişimleri sonrası veya zaman içinde oluşan değişiklikleri değerlendirmeye olanak sağlayacak sistemler gerekliyor.

3.2 Yürüme Analizi Laboratuarında Kullanılan Değerlendirme Yöntemleri

3.2.1 Gözleme Dayalı Analiz

Yürüyen hasta, önce önden sonra her iki yandan izlenerek her ekleme ayrı ayrı bakılır. Bu esnada yürüme uzunluğu 8–10 metre olmalıdır. Bu esnada kayıt tutabilmek için video çekimleri yapılır.

Şekil 3.1 Gözleme dayalı analiz
Lineer ortam denilen video ya da bilgisayarda non-lineer yöntemle, hasta yürürken önden (frontal düzlem) ve yandan (sagital düzlem) kısa süreli çekimler yapılır. Belirli bir eklemden sorunu olan hastalarda istenirse yakın çekim yapılabilir.

Kayıtlar üzerinde montaj, yazı eklemek, yazıcıdan çıkışı almak gibi bir çok avantajların yanında istenirse mikser denilen cihazlarla hastanın önden ve yandan çekimlerini eş zamanlı olarak izlemek ve kaydetmek mümkündür.

Bazı sorunları, yavaş çekimde veya sorunun belirgin olduğu kareleri dondurarak inceleme tanıyyı kolaylaştırabilir. İstenirse monitör ekranından gönye ile veya on-screen digitizer denilen özel ölçüm aletleri ile eklemler açıları da ölçulebilir.

3.2.2 Kinematik Analiz

Hareketi oluşturan kuvvetleri dikkate almadan yalnızca hareketin incelenmesine, kinematik analiz denir. Kinematik analiz sırasında gövdelen, leğen kemiklerinin, bacakların ve ayakların her üç düzlemdeki pozisyonu; eklemler açıları, hız ve ivmeleri ölçülen sayysal veri olarak kaydedilir.

Yürüme siklusu boyunca sürekli değişen eklemler açılarını kaydedebilmek için vücudun belirli noktalarına işaret cihazları (marker) yerleştirilir. Bu cihazlardan gelen sinyal özel kameralar veya alıcılar aracılığıyla izlenir ve bilgisayarda geliştirilmiş yazılımlarla işlenir. Bu işlem sonucunda, yürüme siklusu boyunca, her eklemin üç hareket planındaki açıları hesaplanır.

Hareketin üç boyutlu olarak kaydedilebilmesi için eş zamanlı çalışan en az iki kamera gereklidir. Kameraların görüş alanı kısıtlı olduğundan yürürken hızlı bir yer değişiren insan kısa sürede kameranın görüş alanından çıkar. Bunun için tüm yürüme alanını inceleme amacıyla kinematik sistemlerde en az 5 kamera kullanılır. Kinematik inceleme öncesiinde kameralar kalibre edilmelidir. Ekstremitelerine işaret cihazları yerleştirilen kişi kameraların görüş alanındaki önceden belirlenmiş bir yol boyunca yürütülür. İşaret cihazlarının sinyalleri bilgisayara aktarılır, bilgisayar sinyalin yer değiştirmesini ve dolayısıyla eklemler açılarındaki değişikliği hesaplar. Bir zaman biriminden diğer zaman birimine olan yer değişiminden hız,
hız değişiminden ise ivme hesaplanabilir. Kinematik analiz sonucu elde edilen normal hareket değerleri frontal, sajital ve transvers düzlemlerde grafik olarak çizdirilir.

3.2.3 Kinetik Analiz

İnsanın yürüme hareketinin incelenmesinde özellikle şu kuvvetler bulunmaktadır.

- **Diş kuvvetler:** Yer çekimi etkisiyle ortaya çıkan kuvvetlerdir. Kinematik analiz yardımıyla çeşitli yürüüş fazlarında ortaya çıkan ve bacak üzerine etki eden dış kuvvetlerin şiddeti ve yönü ölçülür. Öte yandan kinematik analiz yaparak eklemlerin konum ve duruşları belirlenir. Her iki analiz metodu kullanılarak dış kuvvetlerin çeşitli eklemler üzerindeki etkileri hesaplanabilir. Eklemlerin konumları, kuvvetin büyüklüğü ve yönü ile ortak kuvvet ve eklemler arasındaki dikey uzaklık bilindiğinde, topuğun yerde geçme anında diz bükülme momenti hesaplanabilir. Eklemin konumu, fotoğrafcılık teknigiyle; kuvveti ise ölçüm plakası yardımıyla belirlenebilir.

- **İç Kuvvetler:** Kas kontraksiyonları sonucu oluşan kuvvetlerdir. İç kuvvetleri nicel olarak ölçecek uygun bir metot bugüne kadar geliştirilmemiştir. Yer çekimi, topuğun yere değmesinin hemen ardından diz eklemini bükme eğilimi göstermektedir (diş kuvvet). Ekleme karşı bir kuvvet etki etmese de bu durum meydana gelmektedir. Karşı kuvvet, quadriceps tarafından oluşturulur (iç kuvvet). Hareketi oluşturan kuvvetlerin (yer tepkimesi kuvvetleri, eklemler, eklemler) incelenmesi öne çıkmaktadır.

Kinetik analizde ölçülebilen tek veri yer tepkimesi kuvveti vektörüdür ve ayağın yere uyguladığı toplam kuvveti ölçen basınca duyarlı plakalarla ölçülür.

Laboratuar da yürüyen insan platforma basarak geçtiğiinde, basma fazında oluşan yer tepki kuvvet vektörleri 20 ms aralıklarla hesaplanır. Böylece ayak bileği, diz ve kalça eklemine etki eden momentler ve eklemlerde oluşan güçler hesaplanabilir. Daha sonra alt ekstremitenin tüm segmentlerinin pozisyon, hız ve hızlanma verileri (kinematik veriler) bilgisayar ortamında bir araya getirilir. Kalça, diz ve ayak bileğine etki eden kuvvetler (diş momentler), dolaylı olarak iç momentler ve güçler hesaplanır.
3.3 Kinematik Verilerin Analizi ve Modellenmesi

4. ORTEZ

4.1 Ortez ve Protezin Tanımı

4.2 Ortezin Kullanım Alanları

Deformiteyi destekleyen ortezler daha ziyade statik olarak kullanıldığından, daha az esnek ve daha ağır olabilirler. Polietilen(vitraten) malzeme bu cihazlar için oldukça uygun bir materyaldır. Ancak yürüyüşü desteklemek amacıyla kullanılan dinamik ortezler hafif,
esnek ve dayanıklı ürün olmalıdır. Bu amaçla kullanılan en uygun materyallерden bazıları polipropilen yada karbongrafit aİaşmalı ürünlerdir.

Ortotik tedaviler hastaların tedavisinde kendi başlarına kullanılan cihazlar değildir. Özellikle rehabilitasyon aşamasında diğer fizik tedavi uygulamaları ile kombine edilmesi gereken tedavi cihazlardır. Diğer tedavi girişimlerinin etkinliğinin artması ve hastanın fonksiyonel iyileşmesi için dinamik yürüyüş ortezleri hayati önem taşır.

Hastaya belirli bir ortezi vermek ve sürekli onu kullanmasını istemek doğru bir tedavi yaklaşıması değildir. Hastanın değişen veya gelişen yürüyüş şekline göre ortez tasarımının yeniden değerlendirilmesi gereklidir. Önemli bir husus, ayak ortez gerekken hastalarda, aİgırlığın minimal tutulmasının gerekli olduğudur. Hastanın kabiliyeti, fonksiyonu ve kısıtlılıkları; diğer bir ifade ile hastaya uygun ortez tespit edilirken, hastanın sadece tanısı değil becerileri dikkate alınmalıdır. Ortez; fonksiyonunu yapamayan eklem, kas veya sinirin eksikliğini tamamlar. Ancak kas ve yumuşak dokuların kısalması sonucu gelişen kalıcı bozukluklar ve anormal kemik şeklinden kaynaklanan yapışal bozukluklar pasif olarak düzeltilemez ve ortezlerle desteklenmesi sınırlıdır.

4.3 Ortezlerin Genel Kullanım Amaçları

Genel olarak ortezlerin kullanım amaçları aşağıda sıralanmıştır.

☑ Bir kaza yâda ameliyat sonrası bazı vücut parçalarının hareketsiz tutulması (örneğin, trafik kazası sonrası boyunun bir boyunluk takılarak omurilik korunması gibi),

☑ Fonksiyonu yapamayan yâda yetersiz olan uzuflation fonksiyonuna yardım edilmesi (örneğin, kolun kırılması bağlı bir sinir yaranmasında el bileğini kaldıramayan kişinin el bileğinin bu hareketine yardım edilmesi gibi),

☑ Ortopedik bir soruna yâda kalıcı bir probleme düşünüse bilecek durumların önlenmesi (örneğin, bacakında aİşti kontrolsüz kasılmaları olan bir kişide ayak bileğini doğru...
pozisyonda tutarak bu kasımların ayak bileği ekleminde, diğer eklemlerde, gövdede ve kaslarda oluşturabileceği zararlı etkilerinin önlenmesi gibi),

- Oluşmakta olan ya da oluşmuş bir şekil bozukluğun düzeltmesi (örneğin, bir kas hastalığı nedeniyle omurgasını dik tutamadığı için zamanla omurgada oluşan eğriliklerin henüz başlangıç aşamasındayken düzeltildiği gibi),

- Ağrılı durumlarda ağrının azaltılması ve giderilmesi (örneğin, romantizmal bir sorun nedeniyle el bilek hareketleri ağrılı olan kişinin bileğini doğru pozisyonda tutarak ağrıya yol açan hareketlerin ve ağrıın engellenmesi gibi),

- Vücutta ortopedik özür nedeniyle kişinin hareketlerini normalden çok fazla enerji harcayarak yapabildiği durumlarda enerji tüketimini azaltmak (örneğin, çocuk felci nedeniyle her iki bacakında belirgin kuvvet kayıpları olan kişinin, yürümeye ortezleri ve yürümeye yardımcıları ile bir yerden bir yere yardım gradsız yürümesi zordur ve daha az yorularak yürümeyi sağlamak gibi).

4.4 Alt Ekstremite Ortezleri

4.4.1 Alt Ekstremite Ortezlerinin Kullanım Amaçları

Alt ekstremite (bacak) ortezlerinin kullanım amaçları aşağıda sıralanmıştır.

- Yürümeye yardımcı olmak
- Ağrıyı azaltmak
- Yükü azaltmak
- Hareketin kontrolü
- Deformitenin ilerlemesinin kontrol

4.4.2 Alt Ekstremitenin Biyomekanik İşlevleri

- Fiksasyon: Sevk, bloke etme ve yerinde tutma.
- Düzeltme: Doğrultma, iyileştirme, fazlasıyla düzeltme.
- Kompenzasyon: Üç boyutlu uzunluk ve hacim dengelemesi.
- Ekstansiyon: Yükü azaltma, çekme durumunda kuvvet uygulaması
4.4.3 Fonksiyonlarına Göre Alt Ekstremite Ortez Çeşitleri

Fonksiyonlarına göre alt ekstremite ortez çeşitlerinin sınıflandırılması alttaki tabloda verilmiştir.[4]

Tablo 4.2 Alt Ekstremite Ortezlerinin Fonksiyonlarına Göre Sınıflandırılması
4.5 Dünyada Ortez Alanında Gelişmeler

Bugün kullanım alanı serebrovasküler hastalıklardan skolyozaya, kırıklardan konjenital deformitelere kadar oldukça geniş alana yayılan ortezlerin tarihi, çok eski yıllara dayanır (M.Ö. 2750). Yapılan kazılardan ilk ortezlerin kırık ekstremitelere uygulandığı anlaşılmaktadır. İlk kapalı redüksiyon ve ortezleme ile ilgili detaylı bilgi Hipokrat tarafından verilmiştir. (M.Ö. 131-201), ağaç ve metal kullanarak üretilen ilk ortezlerin prensip olarak günümüz ortezlerine çok benzese de, oldukça ağır ve estetikten uzak olduğu izlenmiştir.

Şekil 4.1 İlk bacak desteklerinden biri [1]

17. yüzyılda Cambridge Üniversitesi Profesişri Gelsson, raşıtizmle ilgili yazısında genu varum deformitesinin ortezle düzeltilemesi üzerine durmuş, Paris Üniversitesi’nde 1700’lü yılların ortalarında Profesör Nicholas Andry, tüm deformitelerin ortezlenebileceğini belirterek, özellikle skolyoz ve kifozda kullanılan korselerin spinal deformitelerin düzeltılmesinde ki yeri ve öneminine değinmiştir.

Dünya savaşından sonra orıtz alanında hızlı gelişmeler olmuş ve ortopedik rehabilitasyon alanında orıtze olan gereksinim artmıştır. Gelişen teknolojinin orıtz yapımında deriden termoplastığa, çelikten duralimin yuma geçiş sağlanması her geçen gün daha hafif ve estetik orıtzer üretilmeye başlamasına sebep olmuştur.[1]

Bu dernek her yıl düzenlediği seminer, konferans ve kursları, üç yılda bir gerçekleştirdiği dünya kongreleri ile bu bilimin evrenselleşmesine büyük katkıda bulunmaktadır. 1990’da dernek, İskoçya Straclyde Üniversitesi’nde alanında uzman olan 50 otörün katıldığı önemli bir toplantı düzenledi. Toplantıda ortez-protez alanında 20 yıllık deneyim ve araştırmalar tartışıldı. Toplantı sonunda cerrah, protetist-ortotist ve fizyoterapistlere önemli mesajlar verildi ve ideal amputasyon seviyesi, protezi ve protez eğitiminin yönelik alına kararlar bir kitapta toplandı.[2]

5. SOLIDWORKS MOTION

Makine tasarım sürecinde kinematik analizler vazgeçilmez olmuştur. Bu işlemleri yapmak bazen elle mümkün iken, bazense bu elle yapılacak uzun işlemleri bir program yardımcı ile yapmak zorunda kalınıyor. Günümüz şartlarında, zaman her şeyden önemli, sistemlerde çok karmaşık ve elle çözülemeyecek seviyede olduğundan bu programlara belirli bir seviyede bağlanmış olduk. Bu programlar Msc Nastran Patran, Ansys gibi profesyonel programlar olabilirken, cad programlarının kendi çözümleri de kinematik analizde kullanılabilir.

Solidworks’un en temel özelliği olan mühendisliği kolaylaştırma prensibini Motion Study kısmında da görebiliriz. Tasarmcı cad tasarımını sırasında kinematik analiz yaparak, yaptığı montajın fiziksel kanunlar göz önünde bulundurularak düzgün çalışıp çalışmadığını yanı parçaların istenilen ivme, hız, güç tüketimi gibi konularda kontrol eder. Bu işlemler tekrar ederek kendisi için optimum tasarım değerleri bulmaya çalışır.
Motion Study, Solidworks Premium paketi ile gelen bir özellik olup parçaların zamanına bağlı olarak hız, yer değiştirme, ivme gibi sonuçlarını inceleyebilir ayrıca parçalar arasındaki kuvvet aktarımını kolayca hesaplamasını sağlayabiliriz. Bunların dışıda elimizde olan sistemizin modellemesini düzgün bir şekilde yaparsanız, sisteminin çalışması için gerekli olan güç miktarını da sonuç olarak zaman alabilir ve örneğin bu şekilde motor seçimi yapabiliriz.

Solidworks Motion study ile ayrıca bu kuvvet aktarımı hesaplanmasının ardından, parçalar üzerinde olan kuvvetleri statik analiz veya dinamik analizde kullanılması amacı ile dışarı alabiliriz. Bu şekilde örneğin sistemimiz için en kritik olan zaman aralıklarında oluşan kuvvetleri, motion study içinde hesaplayabilir ve istediğimiz zaman aralığı yada zaman için mukavemet analizini solidworks içinde yapabiliriz.

Motion analiz sistemlerin sonuçlarının fiziksel şartları göz önünde bulundurarak hesaplamalar yaptığımızda, bize gerçekçi sonuçlar sunar ve daha imalatını gerçekleştirmeden sistemin kinematik açından nasıl çalıştığını gözlemleyebiliriz. Hatta elde ettiğiınız sonuçlar ile mukavemet analizine geçiş yapabiliriz.

Mate işlemler konusunda dikkat edeceğimiz bir nokta daha var. Bu da gereksiz mate yapılması yani fazladan montaj üzerinde kısıtlama yapılması sonucunda ortaya çıkan durumlardır. Bizim sisteme verdiğimiz her mate, parçaların bu 6 tane serbestlik derecelerinden birini yada birkaçını kaldırmaktadır. Her mate’in kendine özgün serbestlik derecesi kaldırmaya özelliği vardır (örneğin concentric mate 2 yönde dönüyeyi kaldırmırken 2
yönde de ilerlemeyi kaldırır yani parçada 2 adet serbetlik derecesi bırakır.) Bazen sisteme mateleri uyguladığımızda farklı mateler aynı cismin aynı serbestlik derecesini kaldıran yarabılır. Böyle bir durumda program otomatik olarak fazla verilen kısıtlamalarından birini kaldırır. Yani bu işlemi otomatik olarak gerçekleştirir.

Bu durumun otomatik olarak gerçekleşmesi hangi maten'in kısıtlamasının kaldıracagını bilmememiz gibi bir durum ortaya çıkar ortaya. Bu şekilde bir olay olay, ivme yer değiştirirme gibi sonuçları fazla etkilemez iken, kuvvet aktarımını ciddi şekilde etkilemektedir. Düzgün kuvvet aktarımı hesaplanmasının istiyorsak, fazadan kısıtlama vermememiz gerekir ve kendimiz bunu hesaplamaları yaparak bunu ortadan kaldırmabiliriz. Nerede fazadan kısıtlama olduğunu görebilmek için motion study properties altından "çözüm sırasında tüm mesajları göster" seçeneği ile programın otomatik olarak kaldırdığını kısıtlamaları görebiliriz. Nerede fazadan kısıtlama yaptığımı öğrendikten sonra, o bölgede kısıtlama miktarını düşürek bunu gerçekleştirebiliriz.

Motion study içerisinde kuvvet tanımlarken, zaman çubuğumuzu her zaman analizin başına çekmemez gerekir. Aksi takdirde, bıraktığımız saniyeden sonrasında istediğimiz kuvveti uygular.

Analiz yaparken, her verilen mate, yay ve kuvvet benzeri tanımlamaları yaptktan sonra hesaplamada geçmemiz uygun olur. Böylece nerde hatalı yaptığımızı daha kolay anlayabiliriz. Aksi takdirde vereceğiniz tanımlamalardan sonra alacağımız bir hatanın neden dolayı kaynaklandığını çözmek zor olacaktır.[13]

5.1 Montajın Hareket Etüdü İle Elde Edilen Hareketindeki Fazlar

Şekil 5.1 Montajın Hareket Etüdü İle Elde Edilen Hareketindeki Fazlar; Soldan Sağa Sırasıyla; Topuk Teması, Ayağın Tam Teması, Basma Fazı Ortası, Topuk Ayrılışı Fazı, Parmak Ayrılışı Fazı, Hızlanma Fazı, Salınım Fazı Ortası, Salınım Fazı Sonu

5.2 SolidWorks Hareket Etüdü İle Hesaplanan Sonuç ve Grafikler

Ayağın tam teması fazındaki konumlar 0° kabul edilerek hesaplanan yer değişimlerini göstermektedir. Uyluk ve ayağın açısal yer değişiminin basma fazında fazla olduğu görülürken, diz motorunun sebep olduğu baldırın açısal yer değişimini salınım fazında da fazla olduğu görülmüştür.
Maksimum açısal hız değişimi yürüyüşün 1,66. saniyesinde 349,8 deg/s ile diz motorunun hareket ettiği balleste görülmektedir. Ortez 1,55 ve 1,81 saniyeleri arasında ayağın yere basmaya hazırlanışı sağlamak fazı sonundadır. Bu fazda ballest en büyük açısal hızını yaparak adım uzunluğunu artırır. Ardından topuk yere değmeden hemen önce bacağın öne doğru hareketi frenlemek için en fazla diz motorunda omak üzere tüm motorlarda yavaşlama görülür. Kalça motorunun hareket ettiği uyulktaki maksimum açısal hız değişimi yürüyüşün hızlandığı fazında olduğu 1,15. saniyesinde görülmektedir. Bu fazda parmak yerden ayrılp topuğun vücut öنيnde yere değebilmesi için ayak hızlanmalıdır. Ayak bileği motoru ise maksimum açısal hızını 0,91. saniyesinde 141,7 deg/s açısal hızla yapmıştır. Ortez 0,808 ve 1,01 saniyeleri arasında salınım öncesi parmak ayrıışı fazındadır.
Motorlardaki Zamana Bağlı Güç Tüketimi Grafiği

Maksimum güç tüketimi yürüme siklusunun 1,73. saniyesinde (salınım fazı sonu) -65,13 Watt ile bağlı hareket ettiren diz motorunda görülmüştür. Ayrıca bu zaman maksimum açısal hızın olduğu zamana (1,66. sn) çok yakındır. Kalça motoru maksimum güç tüketimini yürüme siklusunun 1,18. saniyesinde -55,40 Watt ile yapmaktadır. Bu zaman ayrıca kalcanın maksimum açısal hız değişimi yaptığı zamana (1,15) çok yakındır. Ayak bileği motorunda ise maksimum güç tüketimi 1,62. Saniyede 1,76 watt olduğu görülmüştür.

Şekil 5.4 Motorlardaki Zamana Bağlı Güç Tüketimi Grafiği
Kalça Destek Parçasıyla Uyuluk Parçasını Birbirine Bağlayan Mafsalda Oluşan X ve Y Eksenindeki Tepki Kuvvetleri ve Bileşke Kuvvetlerinin Zamana Bağlı Değişimi

Şekil 5.5 Kalça Destek Parçasıyla Uyuluk Parçasını Birbirine Bağlayan Mafsalda Oluşan X ve Y Eksenindeki Tepki Kuvvetleri ve Bileşke Kuvvetlerinin Zamana Bağlı Déğisimi

Kalça mafsalında maksimum tepki kuvveti yürümeye yönelik sıklusunun 1,82. saniyesinde 96 N olarak bulunmuştur.
Diz mafsalındaki maksimum bileşke kuvvet kalça mafsalında olduğu gibi yürüme sıklusunun 1,82 saniyesinde görülmüştür. Bu anda ki bileşke tepki kuvveti 93,6 N’dur.
Baldır Parçasıyla Ayak Bileği Destek Parçasını Birbirine Bağlayan Mafsalda Oluşan X ve Y Eksenindeki Tepki Kuvvetleri ve Bileşke Kuvvetlerinin Zamana Bağlı Değişimi

Diz mafsalındaki maksimum bileşke kuvvet diz ve kalça mafsallarında olduğu gibi yürüme siklusunun 1,82. Saniyesinde görülmüştür. Bu anda ki bileşke tepki kuvveti 59,4 N'dur.

Bu yüksek tepki kuvvetleri salınım sonu fazında başlayıp topuk teması fazının sonuna kadar devam etmektedir.
TEMEL KAVRAMLAR

Anatomi: İnsan, hayvan ve bitkilerin yapısını ve organlarının birbiriyile olan ilgilerini inceleyen bilim
Amputasyon: Cerrahi olarak ekstremitenin kesilip uzaklaştırılması
Alt ekstremité: Bacak
Deformite: Şekil bozukluğu
Dezartikülasyon: Kol ve bacakların eklemden kesilmesi işlemi.
Dorsifleksör: Fleksiyon hareketi yapan kas
Ekstansiyon: Eklem açısını büyütme hareketi, Fleksiyonun tersi
Femur: Uyluk
Fizyoloji: Canlıların hücre, doku ve organlarının görevlerini ve bu görevlerin nasıl yerine geldiklerini inceleyen bilim dalı.
Fleksiyon: Vücutun aralarında eklem bulunan iki bölüümü arasındaki bükülme hareketi.
Genu Varum: O-bacak, dizler arası mesafe çok genişir.
Genu Valgum: X-bacak, sıklıkla dizlerin mediali birbirine değer.
Konjenital: Doğuştan
Kontraktür: Bir ya da daha fazla kas grubunun kalıcı ve sürekli kasılmasıyla nitelenen patolojik durum; kas sertliği
Postür: Vücutun her hareketinde eklemlerin aldığı pozisyonların birleşimi postür olarak tanımlanmaktadır.
Plantar: Tabana ait
Tarsometatarsal: Tarsus (ayak bileği) ve metatarsus (ayak tarağı)’u ilgilendiren
Transplantasyon: Organ ya da doku naklı
Üst ekstremité: Kol
Varus: Kemik veya eklenin kusurlu teşeffülü
İnsan Vücutunun Üç Boyutlu İncelenmesi

Koronal veya frontal düzlem: Gövdeyi ön ve arka olarak ikiye bölen düzlemdir. Bir insana önden baktığımızda frontal düzlemi görürüz.
Transvers: Gövdeyi alt ve üst olarak ikiye bölen düzlemdir. Bir insana tepeden baktığımızda transvers düzlemi görürüz.
KAYNAKLAR