EXPERIMENT 6
COMMON-BASE AND EMITTER-FOLLOWER (COMMON-COLLECTOR) TRANSISTOR AMPLIFIERS

Std. No. Name & Surname:
1
2
3

Group No :
Submitted to :
Date :

Spring, 2013
OBJECTIVE

To measure DC and AC voltages in common-base and emitter-follower (common-collector) amplifier. To obtain measured values of voltage amplification (A_v), input impedance (Z_i) and output impedance (Z_o).

EQUIPMENT REQUIRED

(2) NPN (2N3904, 2N2219, or equivalent general purpose)

(1) 100 Ω

(1) 1 kΩ

(2) 3 kΩ

(2) 10 kΩ

(1) 33 kΩ

(2) 15 µF

(1) 100 µF

RESUME OF THEORY

The common-base (CB) transistor amplifier configuration is used primarily for higher frequency operation. It provides large voltage gain at low input and moderate output impedance. Its voltage gain is

$$A_v = \frac{R_C}{r_e}$$ \hspace{1cm} (1.1)

AC Input Impedance: The ac input impedance is

$$Z_i = r_e \text{ (ground based terminal)}$$ \hspace{1cm} (1.2)

AC Output Impedance: The AC output impedance is

$$Z_o = R_C$$ \hspace{1cm} (1.3)

The common-collector (CC) or emitter-follower (EF) transistor amplifier configuration is used primarily for impedance matching operation. It provides voltage gain near unity, high input and low output impedance.

AC Voltage Gain: The AC voltage gain of CC amplifier is calculated as

$$A_v = \frac{R_E}{R_E + r_e}$$ \hspace{1cm} (1.4)

AC Input Impedance: The AC input impedance is calculated as

$$Z_i = R_1 \parallel R_2 \parallel \beta (R_E + r_e)$$ \hspace{1cm} (1.5)
AC Output Impedance: The AC output impedance is

\[Z_o = r_e \]

(1.6)

PROCEDURE

Part 1. Common-Base DC Bias

a. Calculate DC bias values for the circuit of Fig 1. Record calculated values below:

\[V_B \text{ (calculated)} = \text{__________} \]
\[V_E \text{ (calculated)} = \text{__________} \]
\[V_C \text{ (calculated)} = \text{__________} \]
\[I_E \text{ (calculated)} = \text{__________} \]

Calculate \(r_e \) using \(\frac{26 \text{mV}}{I_E \text{(mA)}} \)

\[r_e \text{ (calculated)} = \text{__________} \]

b. Wire up the circuit of Fig 1. Set \(V_{CC} = 10 \text{ V} \). Check the DC bias of the circuit measuring the values of
Calculate the DC emitter current using

\[I_E = \frac{V_E}{R_E} \]

\[I_E = \text{___________} \]

Calculate the AC dynamic resistance, \(r_c \)

\[r_c = \frac{26 \text{mV}}{I_E \text{mA}} \]

\[r_c = \text{___________} \]

Compare the DC voltages, current \(I_E \), and dynamic resistance \(r_c \) calculated in step 1(a) with the values obtained in step 1(b).

Part 2. Common-Base AC Voltage Gain

a. Calculate the AC voltage gain of CB amplifier in Fig 1 using Eq 1.1.

\[A_v \text{(calculated)} = \text{___________} \]

b. Apply an AC input signal, \(V_{sig} = 50 \text{ mV}, \text{rms} \). Measure the resulting AC output voltage, \(V_o \).

\[V_o \text{(measured)} = \text{___________} \]

Calculate the circuit AC voltage gain

\[A_v = \frac{V_o}{V_{sig}} \]
\[A_v = \text{__________} \]

Compare the voltage gain calculated in step 2(a) with that measured in step 2(b).

Using the oscilloscope, observe and sketch the input waveform, \(V_{\text{sig}} \), and output waveform, \(V_o \), in Fig 2.

Fig 2

Part 3. CB Input Impedance, \(Z_i \)

- a. Obtain the AC input impedance of the CB amplifier in Fig 1 using Eq.1.2.

\[Z_i(\text{calculated}) = \text{__________} \]

- b. To measure \(Z_i \) connect input measurement resistor, \(R_i=100\Omega \) as shown in Fig 3. Apply input
$V_{\text{sig}} = 50 \text{ mV, rms at frequency } f = 1 \text{ kHz. Measure } V_r.$

Calculate using

$$V_i = \frac{Z_i}{(Z_i + R_s)} V_{\text{sig}}$$

$$Z_i = \frac{V_i}{(V_{\text{sig}} - V_i)} R_s$$

Remove resistor $R_s.$

Compare the AC input impedance calculated in step 3(a) with that measured in step 3(b).
Part 4. CB Output Impedance, Z_o

a. Determine the AC output impedance of the CB amplifier in Fig 1 using Eq.1.3.

\[Z_o(\text{calculated}) = \ldots \]

b. For an input of V_{sig}=20 mV, rms measure the output voltage, V_o, with no load connected.

\[V_o(\text{measured})(\text{unloaded}) = \ldots \]

Now connect load $R_L = 3$ kΩ and measure V_L.

\[V_L(\text{measured}) = \ldots \]

The output impedance can be calculated from

\[V_L = \frac{R_L}{Z_o + R_L} V_o \]

Hence,

\[Z_o = \frac{V_o - V_L}{V_L} R_L \]

\[Z_o = \ldots \]

Compare the AC output impedance calculated in step 4(a) with the measured in step 4(b).

Part 5. Emitter-Follower DC Bias

a. Calculate DC bias values for the EF circuit of Fig 4. Record calculated values below.
Fig 4

\[V_B \text{(calculated)} = \quad \]
\[V_E \text{(calculated)} = \quad \]
\[V_C \text{(calculated)} = \quad \]
\[I_E \text{(calculated)} = \quad \]

Calculate \(r_e \) using \(r_e = 26\text{(mV)}/I_E\text{(mA)} \).

\[r_e \text{(calculated)} = \quad \]

b. Wire up the circuit of Fig. 4. Set \(V_{CC} = 10\text{V} \). Check the DC bias of the circuit measuring the values of

\[V_B \text{(measured)} = \quad \]
\[V_E \text{(measured)} = \quad \]
\[V_C \text{(measured)} = \quad \]

Calculate using

\[I_E = \frac{V_E}{R_E} \]

\[I_E = \quad \]
Determine the value of r_e using $r_e = \frac{26\text{mV}}{I_E\text{mA}}$.

\[r_e = \text{____________________} \]

Compare the DC voltages and current calculated in step 5(a) with those measured in step 5(b).

Part 6. Emitter-Follower AC Voltage Gain

a. Calculate the AC voltage gain of EF amplifier in Fig 1 using Eq 1.4.

\[A_v \text{(calculated)} = \text{____________________} \]

b. Apply an AC input signal, $V_{\text{sig}} = 1\text{ V}$, rms. Measure the resulting AC output voltage, V_o.

\[V_o \text{(measured)} = \text{____________________} \]

Calculate the circuit AC voltage gain

\[A_v = \frac{V_o}{V_{\text{sig}}} \]

\[A_v = \text{____________________} \]

Compare the voltage gain calculated in step 6(a) with that measured in step 6(b).

Observe and sketch the input waveform, V_{sig}, and output waveform, V_o, in Fig 5.
Part 7. Emitter-Follower EF Input Impedance, Z_i

c. Obtain the AC input impedance of the EF amplifier in Fig 4 using Eq.1.5.

$$Z_i(\text{calculated}) = \ldots$$

d. To measure Z_i, connect input measurement resistor, $R_i=10\,k\Omega$ as shown in Fig 6. Apply input $V_{\text{sig}}=2\,V$, rms at frequency $f=1\,\text{kHz}$. Measure V_{i}.
\[V_i = \frac{Z_i}{(Z_i + R_s)} V_{sig} \]

\[Z_i = \frac{V_i}{(V_{sig} - V_i)} R_s \]

\[Z_i = \text{____________} \]

Compare the AC input impedance of a CC amplifier calculated in step 7(a) with that measured in step 7(b).

Part 8. Emitter-Follower EF Output Impedance, \(Z_o \)

c. Determine the AC output impedance of a CC amplifier in Fig 4 using Eq.1.6.

\[Z_o \text{(calculated)} = \text{____________} \]
d. For an input of $V_{\text{sig}}=20$ mV, rms at frequency $f=1$ kHz measure the output voltage, V_o.

$$V_o(\text{measured}) = $$

Now connect load $R_L=100$ Ω and measure V_L.

$$V_L(\text{measured}) = $$

The output impedance can be calculated from

$$V_L = \frac{R_L}{(Z_o + R_L)} V_o$$

Hence,

$$Z_o = \frac{V_o - V_L}{V_L} R_L$$

$$Z_o = $$

Compare the CC output impedance calculated in step 8(a) with the measured in step 8(b).
CONCLUSION

Student Name and ID:
CONCLUSION

Student Name and ID:
CONCLUSION

Student Name and ID: