HOMEWORK 6

Solve any 5 of the following problems.
Adapt the rules given in the previous homework.

Dr. Mehmet Çevik
E-mail: mehmet.cevik@deu.edu.tr
Website: http://kisi.deu.edu.tr/mehmet.cevik/

1 – Pinion gear A rolls on the gear racks B and C. If B is moving to the right at 2.4 m/s and C is moving to the left at 1.2 m/s, determine the angular velocity of the pinion gear and the velocity of its center A.

2 – The gear rests in a fixed horizontal rack. A cord is wrapped around the inner core of the gear so that it remains horizontally tangent to the inner core at A. If the cord is pulled to the right with a constant speed of 0.6 m/s, determine the velocity of the center of the gear, C.

3 – If bar AB has an angular velocity $\omega_{AB} = 4$ rad/s, determine the velocity of the slider block C at the instant shown.
4 – If the hydraulic cylinder shortens at a constant rate of $v_C = 0.6 \text{ m/s}$, determine the angular velocity of link ACB and the velocity of block B at the instant shown.

5 – At the instant shown, the truck travels to the right at 3 m/s, while the pipe rolls counterclockwise at $\omega = 8 \text{ rad/s}$ without slipping at B. Determine the velocity of the pipe’s center G.

6 – If the ring gear D is held fixed and link AB rotates with an angular velocity of $\omega_{AB} = 10 \text{ rad/s}$, determine the angular velocity of gear C.

7 – If rod CD is rotating with an angular velocity $\omega_{DC} = 8 \frac{\text{rad}}{\text{s}}$ determine the angular velocities of rods AB and BC at the instant shown.