Three Phase Alternating Voltage and Current

Monophase

\[Z = \frac{V_{\text{rms}} e^{j\phi}}{I_{\text{rms}} e^{j\phi}} = |Z| e^{j\phi} = Z_{\text{op}} + jZ_{\text{im}} \]

\[Z_{\text{op}} = \sqrt{R^2 + X_L^2} \]

\[\cos \phi = \frac{R}{Z} \]

Dr. Levent ÇETİN
Three Phase Alternating Voltage and Current

Three phase

Three-phase electric power is a common method of alternating-current electric power generation, transmission, and distribution. It is a type of polyphase system and is the most common method used by electrical grids worldwide to transfer power. It is also used to power large motors and other heavy loads. A three-phase system is usually more economical than an equivalent single-phase or two-phase system at the same voltage because it uses less conductor material to transmit electrical power.

Definition

A three-phase (3Φ) system is a combination of three single-phase systems. In a 3Φ balanced system, power comes from a 3Φ AC generator that produces three separate and equal voltages, each of which is 120° out of phase with the other voltages. A three-phase AC system consists of three-phase generators, transmission lines, and loads.

Dr. Levent ÇETIN

Three Phase Generation

Dr. Levent ÇETIN
Three Phase Alternating Voltage and Current

Three Phase Waveform

Three Phase Alternating Voltage and Current

One Critical Advantage of Three Phase Waveform

Power delivered to a three-phase load is constant at all time, instead of pulsing as it does in a single-phase system.

Concerning that the power is proportional to square of the voltage signal

Monophase Power:

Three Phase Power:

Power transfer into a linear balanced load is constant, which helps to reduce generator and motor vibrations.

Dr. Levent ÇETIN
Three Phase Alternating Voltage and Current

Three Phase Distribution Lines

We can connect the negative (ground) ends of the three single-phase generators and loads together, so they share the common return line (neutral).

Three Phase Distribution Lines

Then the three phase system reduces to necessary number of cable to transfer power from 6 to 4.

Dr. Levent ÇETİN

Three Phase Alternating Voltage and Current

Three-phase systems may have a neutral wire. A neutral wire allows the three-phase system to use a higher voltage while still supporting lower-voltage single-phase loads. In high-voltage distribution situations, it is common not to have a neutral wire as the loads can simply be connected between phases (phase-phase connection).

Dr. Levent ÇETİN
Three Phase Alternating Voltage and Current

Three Phase Currents
If each of the phases transfers power to loads that have same impedance, such three-phase power systems (equal magnitude, phase differences of 120°, identical loads) are called balanced.

\[
I_x = \frac{V \angle 0^\circ}{Z \angle 0} = I \angle -\theta \\
I_y = \frac{V \angle -120^\circ}{Z \angle 0} = I \angle -120 - \theta \\
I_z = \frac{V \angle -240^\circ}{Z \angle 0} = I \angle -240 - \theta
\]

The phase currents tend to cancel out one another, summing to zero in the case of a linear balanced load. This makes it possible to reduce the size of the neutral conductor because it carries little to no current; all the phase conductors carry the same current and so can be the same size, for a balanced load.

\[
I_p = \left[\cos(-\theta) - \frac{1}{2} \cos(-\theta) + \frac{\sqrt{3}}{2} \sin(-\theta) - \frac{1}{2} \sin(-\theta) - \frac{\sqrt{3}}{2} \sin(-\theta) \right] + j \left[\sin(-\theta) - \frac{1}{2} \sin(-\theta) + \frac{\sqrt{3}}{2} \cos(-\theta) - \frac{1}{2} \sin(-\theta) + \frac{\sqrt{3}}{2} \cos(-\theta) \right]
\]

= 0

Dr. Levent ÇETIN

Star (Wye or Y) Connected Three Phase Systems
It is not necessary to have six wires from the three phase windings to the three loads. Each winding will have a ‘start’ (S) and a ‘finish’ (F) end. The star or wye (Y) connection mentioned is achieved by connecting the corresponding ends of the three phases together.

Dr. Levent ÇETIN
Three Phase Alternating Voltage and Current

Star (Wye or Y) Connected Three Phase Systems

\[V_{ph} = \text{Phase Voltage}, \quad V_L = \text{Line Voltage}, \quad I_{ph} = \text{Phase Current}, \quad I_L = \text{Line Current} \]

Delta (Mesh or Δ) Connected Three Phase Systems

It is not necessary to have six wires from the three phase windings to the three loads. Each winding will have a 'start' (S) and a 'finish' (F) end. The star or wye (Y) connection mentioned is achieved by connecting the corresponding ends of the three phases together.
Three Phase Alternating Voltage and Current

Delta (Mesh or \(\Delta \)) Connected Three Phase Systems

\[V_{\phi} = \text{Phase Voltage}, \quad V_{L} = \text{Line Voltage}, \quad I_{\phi} = \text{Phase Current}, \quad I_{L} = \text{Line Current} \]

Dr. Levent ÇETİN

Three Phase Power

Total power \((P_T)\) is equal to three times the single-phase power. Then the mathematical representation for total power in a balanced delta or wye load is

\[P_{3\phi} = 3P_{\phi} = 3V_{\phi}I_{\phi} \]

For Star or Y connected systems

\[V_L = \sqrt{3}V_{\phi}, I_L = I_{\phi} \]

\[P_{3\phi} = 3V_{\phi}I_{\phi} = 3 \frac{V_L}{\sqrt{3}} I_L \]

\[P_{3\phi} = \sqrt{3}V_L I_L \]

For Delta or \(\Delta \) connected systems

\[V_L = V_{\phi}, I_L = \sqrt{3}I_{\phi} \]

\[P_{3\phi} = 3V_{\phi}I_{\phi} = 3V_L \frac{I_L}{\sqrt{3}} \]

\[P_{3\phi} = \sqrt{3}V_L I_L \]

\[V_{\phi} = \text{Phase Voltage}, \quad V_L = \text{Line Voltage}, \quad I_{\phi} = \text{Phase Current}, \quad I_L = \text{Line Current} \]

Dr. Levent ÇETİN
Three Phase Power Triangle

If the 3ф system is connected to a balanced load with impedance:

\[Z_\phi = |Z_\phi| \angle \phi \]

Then the power triangle and the power values of the 3ф system is similar to monophase systems:

\[
\begin{align*}
S_{3\phi} &= \sqrt{3} V_L I_L \quad \text{[VA]} \\
Q_{3\phi} &= \sqrt{3} V_L I_L \sin \phi \quad \text{[VAR]} \\
P_{3\phi} &= \sqrt{3} V_L I_L \cos \phi \quad \text{[W]}
\end{align*}
\]

\[V_\phi = \text{Phase Voltage}, \quad V_L = \text{Line Voltage}, \quad I_\phi = \text{Phase Current}, \quad I_L = \text{Line Current} \]

Dr. Levent ÇETİN

Three Phase Analysis

Problem: An asynchronous electric that runs using three phase grid has a power factor of 0.85 and measured that it gets 7 [A] from grid. What are the powers it gets from R-S-T phases if the phases balanced?

Solution:

\[
\begin{align*}
\text{P} : & \text{ Real Power [Watt]} \\
\text{Q} : & \text{ Apparent Power [VAR]} \\
\text{S} : & \text{ ReactivePower [VA]} \\
\text{U} : & 380 [V] \rightarrow \text{The voltage between the phases is 380 [V]} \\
\text{I} : & \text{It is the current taken from one phase [A]}
\end{align*}
\]

\[
\begin{align*}
P &= \sqrt{3} \times U \times I \times \cos \phi = \sqrt{3} \times 380 \times 7 \times 0.85 = 3916 \text{ [W]} \\
Q &= \sqrt{3} \times U \times I \times \sin \phi = \sqrt{3} \times 380 \times 7 \times 0.5268 = 2427 \text{ [VAR]} \\
S &= \sqrt{3} \times U \times I = \sqrt{3} \times 380 \times 7 = 4607 \text{ [VA]}
\end{align*}
\]

Dr. Levent ÇETİN
Three Phase Analysis

To do per phase analysis
1. Convert all Δ load/sources to equivalent Y's
2. Solve phase “a” independent of the other phases
3. Total system power $S = 3 V_a I_a$
4. If desired, phase “b” and “c” values can be determined by inspection (i.e., ±120° degree phase shifts)
5. If necessary, go back to original circuit to determine line-line values or internal Δ values

Delta to wye conversion

The Y-Δ transform is known by a variety of other names, mostly based upon the two shapes involved, listed in either order. The Y, spelled out as wye, can also be called T or star; the Δ, spelled out as delta, can also be called triangle, Π (spelled out as pi), or mesh. Thus, common names for the transformation include wye-delta or delta-wye, star-delta, star-mesh, or T-Π.

\[
\begin{align*}
R_a &= \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1} \\
R_b &= \frac{R_1 R_3 + R_2 R_3 + R_3 R_1}{R_2} \\
R_c &= \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}
\end{align*}
\]

Dr. Levent ÇETIN
Three Phase Alternating Voltage and Current

Three Phase Analysis

Problem: An asynchronous electric that runs using three phase grid has a power factor of 0.85 and measured that it gets 7 [A] from grid. What are the powers it gets from R-S-T phases if the phases balanced?

Solution:

\[P = \sqrt{3} \times U \times I \times \cos \phi = \sqrt{3} \times 380 \times 7 \times 0.85 = 3916 \text{ [W]} \]

\[Q = \sqrt{3} \times U \times I \times \sin \phi = \sqrt{3} \times 380 \times 7 \times 0.5268 = 2427 \text{ [VAR]} \]

\[S = \sqrt{3} \times U \times I = \sqrt{3} \times 380 \times 7 = 4607 \text{ [VA]} \]

Dr. Levent ÇETIN

Three Phase Alternating Voltage and Current

Three Phase Analysis

For a 208-V three-phase ideally balanced system, find:

a) the magnitude of the line current \(I_l\);

b) The magnitude of the load's line and phase voltages \(V_{ll}\) and \(V_{ph}\);

c) The real, reactive, and the apparent powers consumed by the load;

d) The power factor of the load.

Dr. Levent ÇETIN
Three Phase Analysis

Per phase circuit:

a) The line current:

b) The phase voltage on the load:

The magnitude of the line voltage on the load:

\[V_{\text{line}} = \sqrt{3} V = 363 \text{ V} \]

Is the load inductive or capacitive?

Dr. Levent ÇETIN

Three Phase Analysis

Per phase circuit:

c) The real power consumed by the load:

The reactive power consumed by the load:

The apparent power consumed by the load:

d) The load power factor:

Dr. Levent ÇETIN