HOMEWORK 3 - LIMITS and CONTINUITY

READING:
Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

1. History of Limits

2. Biographies of the following mathematicians (and scientists):
 - Galileo Galilei (1564–1642)
 - Pierre de Fermat (1601–1665)
 - Bernhard Bolzano (1781–1848)
 - Augustin-Louis Cauchy (1789–1857)
 - Karl Weierstrass (1815–1897)

SOLVE THE BELOW EXERCISES.

1. For a function \(f(x) \) and \(a \in \mathbb{R} \), to find \(\lim_{x \to a} f(x) \), firstly put \(x = a \) and find \(f(a) \); if \(f(a) \) is defined, then the answer is \(\lim_{x \to a} f(x) = f(a) \). Is this a correct argument? When can this be done?

2. State the precise \(\varepsilon-\delta \) definition of \(\lim_{x \to a} f(x) = L \) where \(a, L \in \mathbb{R} \) and \(f \) is a function such that \((a - \delta_0, a + \delta_0) \setminus \{a\} \subseteq \text{Domain}(f) \).

3. By using the precise \(\varepsilon-\delta \) definition of limit, prove the followings:
 a) \(\lim_{x \to a} c = c \), where \(c \) is a real constant
 b) \(\lim_{x \to a} x = a \)
 c) \(\lim_{x \to 5} \sqrt{x - 1} = 2 \)
 d) \(\lim_{x \to 1} (x^2 + x) = 2 \).

4. Prove that if \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \), where \(L \) and \(M \) are real numbers, then the limits \(\lim_{x \to a} (f \mp g)(x) \) and \(\lim_{x \to a} (f \cdot g)(x) \) exist and if \(M \neq 0 \), the limit \(\frac{4}{5} \) \(f(x) \) exists, and moreover they satisfy:
 a) \(\lim_{x \to a} (f \mp g)(x) = \lim_{x \to a} f(x) \mp \lim_{x \to a} g(x) = L \pm M \)
 b) \(\lim_{x \to a} (f \cdot g)(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M \)
 c) \(\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M} \), while \(M \neq 0 \).
 d) Assume the contrary. Can we always say that the limits \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist if one of the limits \(\lim_{x \to a} (f \mp g)(x) \) or \(\lim_{x \to a} (f \cdot g)(x) \) or \(\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) \) exist? Either prove or disprove (giving a counter example).

5. Let \(f \) be a function and \(a \) be a real number in Domain\((f)\). State the precise \(\varepsilon-\delta \) definition of continuity of \(f \) at \(a \).

6. Prove that a composition of continuous functions is a continuous function using the the precise \(\varepsilon-\delta \) definition of continuity.

7. Let \(f \) be a function such that Domain\((f)\) = \([a,b]\) for some real numbers \(a < b \). So \(f(x) \) is defined on \([a,b]\) and not defined if \(x < a \) or \(x > b \). Prove the following:
a) For a point \(c \) in the open interval \((a, b)\), \(f \) is continuous at \(c \) if and only if \(\lim_{x \to c} f(x) = f(c) \).

b) \(f \) is continuous at the left end point \(a \) of \(\text{Domain}(f) \) if and only if \(\lim_{x \to a^-} f(x) = f(a) \).

c) \(f \) is continuous at the right end point \(b \) of \(\text{Domain}(f) \) if and only if \(\lim_{x \to b^-} f(x) = f(b) \).

8. Show that if \(f \) is continuous at \(y_0 \) and \(\lim_{x \to x_0} g(x) = y_0 \) then \(\lim_{x \to x_0} (f \circ g)(x) = f(y_0) \). Under these assumptions can we say that the function \((f \circ g)\) is continuous at \(x = x_0 \)? Explain why?

9. Evaluate \(\lim_{x \to 0} e^{\sin x} \). Consider the functions \(g(x) = e^x \) and \(f(x) = \sin(x) \). Then \(e^{\sin x} = g(f(x)) \). Does the function \(f(x) \) have a removable discontinuity at \(x = 0 \)?

10. Give an example of functions \(f \) and \(g \), both continuous at \(x = 0 \), for which the composite \(f \circ g \) is discontinuous at \(x = 0 \). Does this contradict the theorem "composition of continuous functions is continuous"?

11. Give the all possible definitions of limits \(\lim_{x \to c} f(x) = \Delta \), where \(\Delta \) may be \(a, a^+, a^-, +\infty, -\infty \) and \(\Delta \) may be \(L \in \mathbb{R}, +\infty, -\infty \).

12. State and prove the Sandwich Theorem for limits as \(x \to a \) for a real number \(a \). Does the Sandwich Theorem also hold for limits as \(x \to c \) where \(c \) may be \(a^+, a^-, +\infty \) or \(-\infty \).

13. Evaluate the following limits:

 a) \(\lim_{h \to 0} \frac{5}{\sqrt{9h+4}+2} \)
 b) \(\lim_{h \to 0} \frac{\sqrt{9h+4}+2}{h} \)
 c) \(\lim_{t \to -1} \frac{t^2+3t+2}{t^2-t-2} \)
 d) \(\lim_{x \to 4} \frac{4-x}{5-\sqrt{x^2+9}} \)
 e) \(\lim_{x \to 0} \frac{1+x+\sin x}{3\cos x} \)

14. Evaluate \(\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \) if

 a) \(f(x) = x^2 \)
 b) \(f(x) = 1/x \)
 c) \(f(x) = \sqrt{x} \).

15. Prove that \(\lim_{x \to 2} f(x) = 4 \) if \(f(x) = \begin{cases} x^2, & x \neq 2 \\ 1, & x = 2 \end{cases} \).

16. Evaluate the following limits:

 a) \(\lim_{\theta \to 3^+} \frac{|\theta|}{\theta} \)
 b) \(\lim_{t \to 4^-} (t - \lfloor t \rfloor) \)
 c) \(\lim_{x \to 0} \frac{\sin(kx)}{x} \), where \(k \) is a real constant
 d) \(\lim_{h \to 0} \frac{h}{\sin(3h)} \)
 e) \(\lim_{a \to 0} \frac{2a}{\tan a} \)
 f) \(\lim_{h \to 0} \frac{\sin(sin(h))}{\sin h} \)
 g) \(\lim_{x \to 0} \frac{\tan 3x}{\sin 8x} \)
 h) \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to 0^-} f(x) \) if \(f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x < 0 \\ \sqrt{x}, & x \geq 0 \end{cases} \).

17. At what points the following functions are continuous?

 a) \(y = \frac{x^2+3}{x^2-3x-10} \)
 b) \(y = \frac{1}{|x+1|} \)
 c) \(y = \frac{x^2+2}{\cos x} \)
 d) \(y = \sqrt[4]{3x-1} \)
 e) \(y = (2-x)^{1/5} \)
 f) \(y = \frac{x \tan x}{x^2+1} \).

18. For what value of \(b \) the function \(g(x) = \begin{cases} x, & x < -2 \\ bx^2, & x \geq -2 \end{cases} \) is continuous on \(\mathbb{R} \)?

19. Show that the equation \(x^3 - 15x + 1 = 0 \) has three solutions in the interval \([-4, 4]\).

20. Let \(f \) be a function \(c \) be a real number \(c \) such that \((c - \delta_0, c + \delta_0) \subseteq \text{Domain}(f)\). Prove that \(f \) is continuous at \(c \) if and only if \(\lim_{h \to 0} f(c + h) = f(c) \).

22. State the Sign Preserving Property of Continuous Functions.

23. Is it true that a continuous function that is never zero on an interval never changes sign on that interval? Give reasons for your answer.

24. Given a continuous function f on an interval, assume that the function f has finitely many zeros on the interval, that is, the equation $f(x) = 0$ has finitely many solutions, and assume you can find all these solutions, say a_1, a_2, \ldots, a_n where $a_1 < a_2 < \ldots < a_n$. Can you suggest a way to determine the sign of the function f on each interval (a_k, a_{k+1}) for $k = 1, 2, \ldots, n - 1$ using your answers to the last three questions.

25. State the Extreme Value Theorem for Continuous Functions on a bounded closed interval.

26. State the precise ε-δ definition of $\lim_{x \to a^+} f(x) = L$ where $a, L \in \mathbb{R}$ and f is a function such that $(a, a + \delta_0) \subseteq \text{Domain}(f)$. Using this definition, prove that $\lim_{x \to 0^+} \sqrt{x} = 0$.

27. Let $n \in \mathbb{Z}^+$ and $f(x) = x^n$. Prove the following:

 a) If n is odd, then f is a one-to-one and continuous function on \mathbb{R} and its range is \mathbb{R}.

 b) If n is even, then f is a continuous function on \mathbb{R} and its range is $[0, \infty)$ but it is not one-to-one. It will be a one-to-one function if we restrict the domain of f to be $[0, \infty)$.

 c) You will prove in your Analysis course that the inverse of a one-to-one continuous function on an interval is also a continuous function. Using this prove that the function $g(x) = \sqrt[x]{x} = x^{1/n}$ is continuous on its domain, that is, prove that:

 i) If n is odd, then the domain of g is \mathbb{R} and it is continuous on \mathbb{R}.

 ii) If n is even, then the domain of g is $[0, \infty)$ and it is continuous on $[0, \infty)$.

 d) Let h be a function such that $\lim_{x \to a} h(x) = L$ where a, L are real numbers.

 i) If n is odd, prove that $\lim_{x \to a} \sqrt[n]{h(x)} = \sqrt[n]{L}$.

 ii) If n is even and $L > 0$, prove that $\lim_{x \to a} \sqrt[n]{h(x)} = \sqrt[n]{L}$. Note that when $L > 0$, you must also prove that $h(x) > 0$ for all $x \in (a - \delta_0, a + \delta_0) \setminus \{a\}$ for some $\delta_0 > 0$; so $\sqrt[n]{h(x)}$ will be defined for all $x \in (a - \delta_0, a + \delta_0) \setminus \{a\}$ and we may consider its limit as $x \to a$.

 iii) If n is even and $L = 0$, and if $h(x) \geq 0$ for all $x \in (a - \delta_0, a + \delta_0) \setminus \{a\}$ for some $\delta_0 > 0$, prove that $\lim_{x \to a} \sqrt[n]{h(x)} = \sqrt[n]{L} = 0$. Will this result be true if we do not assume that $h(x) \geq 0$ for all $x \in (a - \delta_0, a + \delta_0) \setminus \{a\}$ for some $\delta_0 > 0$?

28. (a) State the definition of horizontal asymptotes. When do we say that a horizontal line $y = b$ is a horizontal asymptote of a function $y = f(x)$?

 (b) How many horizontal asymptotes can a function $y = f(x)$ have?

 (c) How do we find the horizontal asymptotes of a function $y = f(x)$?

 (d) How many horizontal asymptotes can a rational function $f(x) = \frac{P(x)}{Q(x)}$ can have, where $P(x)$ and $Q(x)$ are polynomial functions? Determine all cases according to the degrees of the polynomials $P(x)$ and $Q(x)$.

29. (a) State the definition of vertical asymptotes. When do we say that a vertical line $x = a$ is a vertical asymptote of a function $y = f(x)$?

 (b) How many vertical asymptotes can a function $y = f(x)$ have?

 (c) How do we find the vertical asymptotes of a function $y = f(x)$? Can a function $y = f(x)$ have a vertical asymptote $x = a$ if f is continuous at a? What are the candidates for vertical asymptotes?

 (d) How many horizontal asymptotes can a rational function $f(x) = \frac{P(x)}{Q(x)}$ can have, where $P(x)$ and $Q(x)$ are polynomial functions? What are the candidates for vertical asymptotes? If a is a root of $Q(x)$, that is, if $Q(a) = 0$, is it necessarily true that the vertical line $x = a$ is a vertical asymptote of the rational function $f(x) = \frac{P(x)}{Q(x)}$?
30. If \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) is a polynomial function of degree \(n \geq 1 \) and if \(n \) is odd, then using the Intermediate Value Theorem for Continuous functions, prove that \(f \) has at least one real number root, that is, the equation \(f(x) = 0 \) has a real number solution \(x_0: f(x_0) = 0 \).

SOLVE THE BELOW EXERCISES FROM YOUR TEXTBOOK.

Of course, solve as many exercises as you need to be sure that you have learned the concepts and can do computations without error but I require you to be prepared to solve some of the following exercises next week:

Sec. 2.1 Rate of Changes and Tangents to Curves (pages 57–59)
Exercises: 2, 4, 6, 8, 10, 14–16, 21, 22.

Sec. 2.2 Limit of a Function and Limit Laws (pages 67–70)

Sec. 2.3 The Precise Definition of a Limit (pages 76–79)
Exercises: 1, 2, 7-14, 16, 17, 20, 24, 25, 30, 33–36, 37–54, 57, 58, 60.

Sec. 2.4 One-Sided Limits (pages 84–86)
Exercises: 1–10, 12, 14, 15, 17, 18, 21–46.

Sec. 2.5 Continuity (pages 95–97)

Sec. 2.6 Limits Involving Infinity (pages 108–113)

A few weeks later you have solved these exercises, to keep fresh your knowledge it is suggested to solve the following exercises from your textbook on pages 110–115:

- Questions to Guide your Review
- Practice Exercises
- Additional and Advanced Exercises