MUKAVEMET I DERSI A GRUBU (II. ÖĞRETİM) II. QUIZ

Şekildeki 6x12 mm\(^2\) kesite sahip AC çubuğu, normal gerilme dayanımı \(\sigma_u = 450 \text{ MPa}\) olan çelikten imal edilmiştir. A ve C deki pimlerin capları 10 mm, B deki pimin capı ise 8 mm dir. Bütün pimler kayma gerilmesi dayanımı 170 MPa olan çelikten imal edilmiştir. A ve C deki pimler tek taraflı B deki pim ise çift taraflı kesmeye maruzdur. Emniyet katsayısının 3,25 alınması istendiğine göre D noktasından uygulanabilecek maksimum \(P\) kuvvetini bulunuz.

Çözüm:

\[
\begin{align*}
\sum M_B &= 0 \rightarrow (F_{AC})_y \cdot 150 - P \cdot 250 = 0 \\
\frac{4}{5} F_{AC} \cdot 150 &= 250P \rightarrow F_{AC} = 2.0833P \\
\sum F_x &= 0 \rightarrow F_{Bx} - (F_{AC})_x = 0 \rightarrow F_{Bx} = \frac{3}{5} F_{AC} = 0 \\
F_{Bx} &= \frac{3}{5} (2.0833P) \rightarrow F_{Bx} = 1.25P \\
\sum F_y &= 0 \rightarrow F_{By} + (F_{AC})_y - P = 0 \rightarrow F_{By} = P - \frac{4}{5} F_{AC} \rightarrow F_{By} = P - \frac{4}{5} (2.0833P) = 0 \\
F_{By} &= -0.667P
\end{align*}
\]

AC çubuğunun kontrolü:

A veya C pimin olduğu yerde çubuğun kesiti alınrsa,

\[
A = 6.(12 - 10) \rightarrow A = 12 \text{ mm}^2
\]

\[
\sigma_{emn} = \frac{\sigma_u}{n} \rightarrow \sigma_{emn} = \frac{450}{3.25} \rightarrow \sigma_{emn} = 138,462 \text{ MPa}
\]

\[
\sigma_{emn} = \frac{F_{AC}}{A} \rightarrow 138,462 = \frac{2.0833P}{12} \rightarrow P = 797.55 \text{ N}
\]
A veya C piminin kontrolü:

\[A = \frac{\pi}{4} \times 10^2 \rightarrow A = 78.54 \text{ mm}^2 \]

\[\tau_{\text{emn}} = \frac{\tau_u}{n} \rightarrow \tau_{\text{emn}} = \frac{170}{3.25} \rightarrow \tau_{\text{emn}} = 52.31 \text{ MPa} \]

\[\tau_{\text{emn}} = \frac{F_{\text{AC}}}{A} \rightarrow 52.31 = \frac{2.0833P}{78.54} \rightarrow P = 1972 \text{ N} \]

B piminin kontrolü:

\[A = \frac{\pi}{4} \times 8^2 \rightarrow A = 50.265 \text{ mm}^2 \]

\[\tau_{\text{emn}} = \frac{\tau_u}{n} \rightarrow \tau_{\text{emn}} = \frac{170}{3.25} \rightarrow \tau_{\text{emn}} = 52.31 \text{ MPa} \]

\[\tau_{\text{emn}} = \frac{F_B}{A} \rightarrow 52.31 = \frac{1.417P}{50.265} \rightarrow P = 3711.004 \text{ N} \]

D noktasından uygulanabilecek en büyük P kuvvetinin değeri yukarıda elde edilen en küçük kuvvet değeri olup, \(P = 797.55 \text{ N} \) dur.