D.E.Ü. Makina Mühendisliği Bölümü Mukavemet I, 1. Ara Sınavı
Soru ve Çözümleri

1. Şekildeki sistemde kullanılan pimlerin akma kayma gerilmesi $\sigma_y = 300 \text{ MPa}$, $\tau_y = 300 \text{ MPa}$ ve BD çubuğunun akma normal gerilmesi $\sigma_y = 600 \text{ MPa}$dir. Her iki durum için emniyet katsayısı $n=3$ olduguna göre,
 a) A ve D pimlerinin çapını,
 b) BD çubuğunun b kalınlığını,
 c) Emniyetli yatak gerilmesi $\sigma_b = 250 \text{ MPa}$ olduuguna göre A mafsalsının t kalınlığını bulunuz.

Çözüm:

a) $\sigma_{em} = \frac{600}{3} = 200 \text{ MPa}$
$\tau_{em} = \frac{300}{3} = 100 \text{ MPa}$

A piminin emniyetli çapı;

\[
\frac{\frac{F_A}{2}}{\pi \cdot d_A^2} \leq \tau_{em} \Rightarrow \frac{2.10^3}{\pi \cdot d_A^2} = 100 \Rightarrow d_A = \sqrt[4]{\frac{2.10^4}{\pi \cdot 10^2}}
\]

$\Rightarrow d_A = 7.978 \text{ mm}$

D piminin emniyetli çapı;

\[
\frac{\frac{F_{BD}}{2}}{\pi \cdot d_D^2} \leq \tau_{em} \Rightarrow \frac{4.30 \cdot 10^3}{\pi \cdot d_D^2} = 100 \Rightarrow d_D = \sqrt[4]{\frac{4.30 \cdot 10^4}{\pi \cdot 10^2}}
\]

$\Rightarrow d_D = 19.54 \text{ mm}$

$\Sigma M_A = 0$

\[-20.10^3 \cdot 450. \cos 30^\circ + F_{BD} \cdot 300. \cos 30^\circ = 0 \Rightarrow F_{BD} = 30 \text{ kN} \]

$\Sigma F_x = 0 \Rightarrow F_{Ax} = 0$

$\Sigma F_y = 0 \Rightarrow F_{Ay} + 30.10^3 - 20.10^3 = 0$

$F_{Ay} = -10 \text{ kN}$

$F_A = \sqrt{F_{Ax}^2 + F_{Ay}^2} = 10 \text{ kN}$

b) $F_{BD} \leq \sigma_{em} \Rightarrow \frac{30.10^3}{b.25} = 200 \Rightarrow b = \frac{30.10^3}{200.25} \Rightarrow b = 6 \text{ mm}$

c) $\sigma_b = 250 \text{ MPa}$

\[
\frac{\frac{F_A}{2}}{\pi \cdot d_A^2} \leq \sigma_b \Rightarrow \frac{10.10^3}{2} = 250 \Rightarrow t = \frac{10^4}{2.7.978.250} \Rightarrow t = 2.5 \text{ mm}
\]
2. Şekildeki civatanın ucundaki somun sıkıldığında civatanın çapında 13\,\mu m lik bir azalmanın olduğu ölçülmektedir. Civata E=200\,\text{GPa} ve \nu=0,29 olan malzemenin ürettiği göre civatadaki iç kuvveti hesaplayınız.

Çözüm:
\[\delta = 13.10^{-3}\,\text{mm}, \quad E = 200\,\text{GPa}, \quad \nu = 0,29 \text{ ve } d = 60\,\text{mm}\]

I. Yol:

\[A = \frac{\pi d^2}{4} = \frac{\pi \times 60^2}{4} \Rightarrow A = 2827,43\,\text{mm}^2\]
\[\varepsilon_y = \frac{\delta}{d} = \frac{-13.10^{-3}}{60} \Rightarrow \varepsilon_y = -0,217.10^{-3}\]
\[\varepsilon_y = \frac{1}{E} \left[\sigma_y - \nu (\sigma_x - 0) \right] \Rightarrow \varepsilon_y = \frac{1}{E} \left[0 - \nu \sigma_y \right] \Rightarrow \sigma_x = -\frac{E \varepsilon_y}{\nu}\]
\[\sigma_x = \frac{200.10^3(-0,217.10^{-3})}{0,29} \Rightarrow \sigma_x = 149,655\,\text{MPa}\]
\[\sigma_x = \frac{P}{A} \Rightarrow P = \sigma_x A = (149,655)(2827,43) = 423139\,\text{N} \Rightarrow P \equiv 423,14\,\text{kN}\]

II. Yol:

\[\varepsilon_y = \frac{\delta}{d} = \frac{-13.10^{-3}}{60} \Rightarrow \varepsilon_y = -0,217.10^{-3}\]
\[\nu = -\frac{\varepsilon_y}{\varepsilon_x} \Rightarrow \varepsilon_x = -\frac{\varepsilon_y}{\nu} \Rightarrow \varepsilon_x = -\left(\frac{-0,217.10^{-3}}{0,29}\right) \Rightarrow \varepsilon_x = 0,748.10^{-3}\]
\[\sigma_x = E \varepsilon_x = 200.10^3(0,748.10^{-3}) \Rightarrow \sigma_x = 149,655\,\text{MPa}\]
\[\sigma_x = \frac{P}{A} \Rightarrow P = \sigma_x A = (149,655)\left(\frac{\pi d^2}{4}\right) = 423139\,\text{N} \Rightarrow P \equiv 423,14\,\text{kN}\]
3. 10 mm çapındaki pirinç civata \((E_p=105 \text{ GPa}) \), iç çapı 18 mm ve et kalınlığı 3 mm olan alüminyum tüpün \((E_a=70 \text{ GPa}) \) içine yerleştirilmiştir. Civatanın vida hatvesi 2 mm olup somun 3/4 tur döndürüldüğü zaman civata ve tüpte meydana gelen gerilmeleri bulunuz.

Çözüm:

\[
\delta = \delta_c + \delta_t = \frac{3}{4} \text{(Vida hatvesi)} = \frac{3}{4} \cdot 2 \Rightarrow \delta = 1.5 \text{ mm}
\]

\[
\delta = \frac{P_t L_c}{A_c E_c} + \frac{P_t L_t}{A_t E_t} = 1.5 \Rightarrow \frac{P_t \cdot 400}{\pi \cdot 10^2 \cdot 105 \cdot 10^3} + \frac{P_t \cdot 400}{\pi \left(24^2 - 18^2\right) \cdot 70 \cdot 10^3} = 1.5
\]

\[
\Rightarrow 4.8510^{-5} P_t + 2.88710^{-5} P_t = 1.5
\]

\[
\Rightarrow 7.73710^{-5} P_t = 1.5
\]

\[
\Rightarrow P_c = 19387.36 \text{ N}
\]

\[
P_t = P_c \Rightarrow P_t = 19387.36 \text{ N}
\]

\[
\sigma_c = \frac{P_c}{A_c} = \frac{19387.36}{\pi \cdot 10^2} \Rightarrow \sigma_c = 246.85 \text{ MPa} \text{ (Çekme gerilmesi)}
\]

\[
\sigma_t = \frac{P_t}{A_t} = \frac{19387.36}{\pi \left(24^2 - 18^2\right)} \Rightarrow \sigma_t = 97.96 \text{ MPa} \text{ (Basma gerilmesi)}
\]
4. BE ve CD çelik çubukları (E=200 GPa) 16 mm çapa sahiptirler. Vida hatvesi 2,5 mm olup B’deki somun 1 tur döndürülsese
a) CD çubuğundaki çeki kuvvetini,
b) ABC rijit çubuğunun C noktasının deplasmanını bulunuz.

Çözüm:
a)

\[\sum M_A = 0 \rightarrow P_{BE} \cdot 150 - P_{CD} \cdot 250 = 0 \]
\[P_{BE} = \frac{5}{3} P_{CD} \quad (1) \]

\[\delta_B = 2.5 - \frac{P_{BE} \cdot L_{BE}}{A.E}, \quad \delta_C = \frac{P_{CD} \cdot L_{CD}}{A.E}, \quad \frac{\delta_B}{\delta_C} = \frac{150}{250} \]
\[\delta_B = \frac{3}{5} \delta_C \quad (2) \]

\[\delta_B = \frac{3}{5} \delta_C \Rightarrow 2.5 - \frac{P_{BE} \cdot L_{BE}}{A.E} = \frac{3}{5} \frac{P_{CD} \cdot L_{CD}}{A.E} \]
\[P_{BE} \cdot (2.2 \cdot 10^3) + \frac{3}{5} P_{CD} \cdot (1.8 \cdot 10^3) = 2.5 \]
\[2.2P_{BE} + \frac{3}{5} \cdot 1.8P_{CD} = 100531 \quad (2') \]

(1), (2’) de yerine yazılırsa;
\[2.2 \cdot \frac{5}{3} P_{CD} + \frac{3}{5} \cdot 1.8P_{CD} = 100531 \Rightarrow P_{CD} = 21179 \text{ N} \]

b) \[\delta_C = \frac{P_{CD} \cdot L_{CD}}{A.E} = \frac{21179 \cdot (1.8 \cdot 10^3)}{\pi \cdot 8^2 \cdot (200 \cdot 10^3)} \Rightarrow \delta_C = 0.948 \text{ mm} \]
5. Alüminyum çubuk (\(E_a=70\) GPa, \(\alpha_a=23.6\times10^{-6}\) \(^{1}\text{C}\)) ve çelik halka (\(E_c=200\) GPa, \(\alpha_c=11.7\times10^{-6}\) \(^{1}\text{C}\)) 20\(^{\circ}\text{C}\) sıcaklıkta şekilde verilen ölçüleri sahiptirler. Çelik halka ısıtıyor ve alüminyum çubuk çelik halka içine serbest olarak yerleştiriliyor. Daha sonra tüm sistemin sıcaklığı 150\(^{\circ}\text{C}\)'ye çıkarılıyor. Çubukta ve halkada meydana gelen son durumda gerilmeleri bulunuz. (Ölçüler mm'dir.)

Çözüm:

Önce alüminyum çubuğun çelik halka içerisine serbestçe geçirileceği sıcaklığı bulalım.
\[
\alpha_c L_c \Delta t_1 = 0.015
\]
\[
11.7 \times 10^{-6} \times 200 \times (t_1 - 20) = 0.15 \quad \Rightarrow \quad t_1 = 84.1 \,^{\circ}\text{C}
\]

150 \(^{\circ}\text{C}\)'ye kadar hem çelik halka hem de alüminyum çubuk ısıtıldığına göre;
\[
\Delta t_1 = 150 - 84.1 \quad \Rightarrow \quad \Delta t_1 = 65.9 \,^{\circ}\text{C}
\]
\[
\Delta t_2 = 150 - 20 \quad \Rightarrow \quad \Delta t_2 = 130 \,^{\circ}\text{C}
\]

olur. Serbestçe geçirildikten sonra çelik halka ve alüminyum çubuktaki toplam şekil değiştirmeler birbirine eşittir. Buna göre;

\[
\delta_2 = \delta_1 \quad \Rightarrow \quad \alpha_a L_a \Delta t_2 - \frac{P L_a}{A_a E_a} = \alpha_c L_c \Delta t_1 + \frac{P L_c}{A_c E_c}
\]

\[
23.6 \times 10^{-6} \times 200 \times 130 - \frac{P \times 200}{\pi \times 0.3^2 \times 70 \times 10^3} = 11.7 \times 10^{-6} \times 200 \times 65.9 + \frac{P \times 200}{800 \times 200 \times 10^3}
\]

\[
P = \frac{23.6 \times 10^{-6} \times 200 \times 130 - 11.7 \times 10^{-6} \times 200 \times 65.9}{\pi \times 0.3^2 \times 70 \times 10^3 + \frac{200}{800 \times 200 \times 10^3}} \quad \Rightarrow \quad P = 86808.64 \text{ N}
\]

\[
\sigma_a = \frac{86808.64}{\pi \times 0.3^2 / 4} \quad \Rightarrow \quad \sigma_a = -122.8 \, \text{MPa}
\]
\[
\sigma_c = \frac{86808.64}{800} \quad \Rightarrow \quad \sigma_c = 108.5 \, \text{MPa}
\]