YAPILarda
KİMyasal KatkılAr
(BETON VE HARÇ KATKıLARı)

BİLDİRİLER / PRESENTATIONS

TMMOB KİMYA MÜHENDİSLERİ ODASI
TMMOB İNŞAAT MÜHENDİSLERİ ODASI
YAPILARDA
KİMYASAL KATKILAR
(BETON VE HARÇ KATKILARI)

BİLDİRİLER / PRESENTATIONS
DÜZENLEME KURULU

Mehmet BESLEME (Kimya Müh. Odası)
Taylan CORUH (Kimya Müh. Odası)
Haluk İŞİZEN (İnşaat Müh. Odası)
Ihsan KAŞ (İnşaat Müh. Odası)
Akın KESKİN (İnşaat Müh. Odası)
Ceren ÖRİNL (Kimya Müh. Odası)

BİLİM KURULU

Prof. Dr. Süheyl AKMAN (İTÜ)
Prof. Dr. M. Riza ALTIOKKA (Anadolu Ünev.)
Prof. Dr. Büлен BARADAN (DEÜ)
Prof. Dr. Şakir ERDOĞDU (KTÜ)
Yrd. Doç. Dr. Ferda MUTLU (GÜ)
Prof. Dr. Hulusi ÖZKUL (İTÜ)
Prof. Dr. M. Ali TAŞDEMİR (İTÜ)
Prof. Dr. Mustafa TOKYAY (ODTÜ)
Prof. Dr. Fikret TÜRKER (Abduniz Ünev.)
Yrd. Doç. Dr. İ. Öğür YAMAN (ODTÜ)
Prof. Asım YEGİNOBALI (TCMB)
Prof. Dr. Mehmet UYAN (İTÜ)
Yrd. Doç. Dr. Bülent YILMAZ (Duml. Ünev.)

DANIŞMA KURULU

Kemal AKBAY (Kimya Müh. Odası)
Oğuzhan AYDIN (B.I.B. Yapı İşl. Gen. Müd.)
Murat BELEN (SİKA Yapı Kimyasalları AŞ.)
Hüseyin BILMAÇ (Eczacıbaşı Koramic)
Hüseyin ÇAĞ (AYDOS Kimya Mak. AŞ)
Gülsen CELEBI (Mimarlar Odası)
İnciçan ÇELENK (B.I.B. Yapı İşl. Gen. Müd.)
İçindekiler / Contents

<table>
<thead>
<tr>
<th>SÖZEL BİLDİRİLER / ORAL PRESENTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kimyasal Beton Katkılarının Gelişimi ve Çimento larla Uyumlu</td>
</tr>
<tr>
<td>2. Çimento Kompozisyonunun ve Kimyasal Katki Kökeninin Beton Özelliklerine Etkisi</td>
</tr>
<tr>
<td>3. Suda Çözünerek FN Sulfone Polimerlerin Çimento Özelliklerine Etkisi</td>
</tr>
<tr>
<td>4. Yapı Malzemeleri Yönetmeliği ve Beton Kimyasal Katki Madde lerini</td>
</tr>
<tr>
<td>5. Beton Kimyasal Katkılardında CE İşaretı</td>
</tr>
<tr>
<td>6. Yapı Malzeme ve Sertifikasyonu</td>
</tr>
<tr>
<td>7. Beton ve Kimyasal Katki Teknolojisinde Yeni Gelişmeler ve Standartlar</td>
</tr>
<tr>
<td>8. Kendiliğinden Yerleşen Betonların Genel Özellikleri</td>
</tr>
<tr>
<td>9. Kimyasal ve Mineral Katkılı Kendiliğinden Yerleşen İhaçlar</td>
</tr>
<tr>
<td>10. Kimyasal Katki Kökeni, Çimento Kompozisyonu ve Çimento Dozlunun Taze Beton Üyeliği Üzerine Etkisi</td>
</tr>
<tr>
<td>11. Betonlarda Akışkanlaştırıcı Katki Kullanımında İstendi Şartlar ve Türkiye’deki Durum</td>
</tr>
<tr>
<td>12.这笔筆在“做”时是“ tires in the” işteında beton katki madde lerinin kullanılması</td>
</tr>
<tr>
<td>13. Üçüncü Kül, Tahmin Kül ve Wallestonit Katkısı Çementoları Sülfür Karbonat Ilaşının Etkisinin İncelemesi</td>
</tr>
<tr>
<td>14. Farklı Dayanım Sınıfları Dahil Etkenler İçin Akışkanlaştırıcı Kimyasal Katkılarnın Su Azaltma Performansları</td>
</tr>
<tr>
<td>15. Yeni Üretim Süperakaşanlaştırıcıların Yüksek Performanslı Çimento Eşaslı Kompozitlerdeki İşlevleri</td>
</tr>
<tr>
<td>16. Farklı Alt Katkılı Betonlarda Katkinin Etkisi</td>
</tr>
<tr>
<td>17. Öyn Üretimli Betonlarda Kullanılan Kimyasal Katki ve Körükyüzü Malzeme</td>
</tr>
<tr>
<td>18. Akışkanlaştırıcı Katki Teknolojisinin Yeni Sınırları ve Uygulama Örnekleri</td>
</tr>
<tr>
<td>19. Söğük Havada Dökülen Beton Özelliklerine Kimyasal Katkılıların Etkisi</td>
</tr>
<tr>
<td>20. Süperakaşanlaştırıcı Miktarının Körükyüzün Üzerine Etkisi</td>
</tr>
<tr>
<td>Isolatörlerin Metal Montajında Çimento Tricosal Kimyasal Katki Materyalinin Kullanılması</td>
</tr>
</tbody>
</table>
FARKLI DAYANIM SINIFLARINDAKİ BETONLAR İÇİN AKIŞKANLAŞTIRICI KİMYASAL KATKILARIN SU AZALTMA PERFORMANSLARI

Burak FELEKOĞLU
Araş Gdr.
İzmir, Türkiye

Selçuk TÜRKEL
Yrd. Doç. Dr.
DEÜ Müh. Fak. İnşaat Müh. Bölümü
İzmir, Türkiye

OZET
Bu çalışmada farklı kimyasal kökenli sahiplik akışkanlaştırıcı kimyasal katkıların, farklı dayanım sınıflarındaki beton karışımında su azaltma performansları incelenmiştir. Üç farklı özellikteki akışkanlaştırıcı kimyasal katkı için üç farklı beton dizaynını hazırlamıştır. Normal, ortalık ve yüksek dayanım sınıfları sırasıyla adlandırılan beton karışımında dayanım sınıfini değiştirerek amacıyla farklı çimento miktartı ve mineral katkı türleri kullanılmıştır. Deneyler sonucunda farklı özellikteki akışkanlaştırıcı kimyasal katkıların su azaltma ve basınç dayanımını artırma performanslarını oranına bağlı olarak belirlenmiş ve tekark akıdan optimum kullanım oranları ortaya koyulmuştur.

GİRİŞ
Günümüz beton teknolojisinde, akışkanlaştırıcı kimyasal katkı kullanımı işlenebilirlik ve dayanım aşıyanın sağladığı avantajlarla bir zorunluluk haline gelmiştir. Kimyasal katkıların çeşitliliğinin ve etkinliğinin artması, bunların kullanımında üreticiler daha konsoliddir davranışa zorunluluğu getirmektedir [1-3]. Farklı dayanım sınıflarındaki beton karışımında hangi akışkanlaştırıcı kimyasal
kakının hangi oranda kullanılması gerektiğini yapılacak araştırmalarla ortaya konulmalıdır.

AMAÇ

DENEYSEL ÇALIŞMALAR

Kullanılan Malzemeler

Normal dayanım sınıfları için Smartflow LS 350 (L) isimli modifiye edilmiş lignosülfonat bazı bir su kesici, orta dayanım sınıfları için Smartflow MS 41 (M) isimli naftalin formaldehyde sülfonat bazı bir su kesici ve yüksek dayanım sınıfları için Smartflow HS 100 (H) isimli polikarboksilat bazı yemi neşil bir su kesici kimyasal katkı kullanılmıştır. Kimyasal katkıların yoğunluk, katı madde oranı ve pH tespitinde sırasıyla TS 781 ISO 758 [6], TS EN 480-8 [7] ve TS 6.05 EN 1262 [8] standartları kullanılmıştır. L katıının yoğunluğu 1.17±0.02 g/cm³ aralığında değişmektedir. Katı madde oranı %37±2 ve pH değeri 4-6 arasında olacaktır. M
Katışımın yoğunluğu 1.12±0.02 g/cm³ arasında değişekte olup, katı madde oranı %50±2 ve pH değeri 7.0-8.0 arasındaki. H katışımın yoğunluğu ise 1.08 ile 1.10 g/cm³ arasında değişmektedir. Katı madde oranı 40±2 ve pH değeri 5-7 arasındaki.

Deney Programı ve Karışım Oranları:

Deney programı ve karışım bilesenleri Tablo 1 ve 2'de sunulmuştur. Karışmılarda kullanılan agregat tane boyut dağılımı sabit olup dağılım eğrisi Şekil 1'de verilmiştir.

Toplam 12 karışımda hazırlanmıştır. Tüm karışımarda 200±2 mm çocuk değeri hedeflenerek farklı miktarlarla su kesilmiştir. Taze betonun; slump (çökme) değerleri, kınıyasal kağıtların hava sürüklenme miktarları, betonun sıcaklığı ve birim hacim ağrılığı gibi özellikleri saptanmıştır, ayrıca bu karışımın her birinden 9'ar adet olmak üzere toplam 108 adet cup örnek alınmış ve 1, 7, 28 günlük basınç dayanımıları belirlenmiştir.

![Şekil 1. Agrega karışımının tane boyut dağılımı](image)

Şekil 1. Agrega karışımının tane boyut dağılımı
Tablo 1. Deney Programı

<table>
<thead>
<tr>
<th>Katılımcı tipi</th>
<th>Katılımcı dozajı (%C)</th>
<th>Katılımcı tipi</th>
<th>Katılımcı dozajı (%C)</th>
<th>Katılımcı tipi</th>
<th>Katılımcı dozajı (%C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL</td>
<td>0</td>
<td>KM</td>
<td>0</td>
<td>KI</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0.0</td>
<td>M</td>
<td>0.8</td>
<td>H</td>
<td>0.8</td>
</tr>
<tr>
<td>I</td>
<td>1.0</td>
<td>M</td>
<td>1.2</td>
<td>H</td>
<td>1.2</td>
</tr>
<tr>
<td>L</td>
<td>1.5</td>
<td>M</td>
<td>1.8</td>
<td>H</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Tablo 2. Beton karışım bileşenleri

<table>
<thead>
<tr>
<th>Karışım oranı (kg/m³)</th>
<th>LK</th>
<th>L 0.6</th>
<th>L 1.0</th>
<th>L 1.5</th>
<th>MK</th>
<th>M 0.4</th>
<th>M 1.0</th>
<th>M 1.4</th>
<th>HK</th>
<th>H 0.9</th>
<th>H 1.2</th>
<th>H 1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çimento</td>
<td>356</td>
<td>307</td>
<td>368</td>
<td>300</td>
<td>542</td>
<td>351</td>
<td>325</td>
<td>355</td>
<td>394</td>
<td>403</td>
<td>411</td>
<td>410</td>
</tr>
<tr>
<td>İşe donmuş</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>70</td>
<td>72</td>
<td>71</td>
<td>86</td>
<td>89</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>Su</td>
<td>229</td>
<td>214</td>
<td>203</td>
<td>192</td>
<td>246</td>
<td>229</td>
<td>218</td>
<td>189</td>
<td>276</td>
<td>213</td>
<td>198</td>
<td>174</td>
</tr>
<tr>
<td>İli agregat 5-15</td>
<td>618</td>
<td>629</td>
<td>636</td>
<td>635</td>
<td>533</td>
<td>539</td>
<td>551</td>
<td>565</td>
<td>484</td>
<td>508</td>
<td>527</td>
<td>339</td>
</tr>
<tr>
<td>İli agregat 15-25</td>
<td>357</td>
<td>364</td>
<td>368</td>
<td>367</td>
<td>301</td>
<td>305</td>
<td>311</td>
<td>319</td>
<td>373</td>
<td>789</td>
<td>799</td>
<td>516</td>
</tr>
<tr>
<td>Karas</td>
<td>761</td>
<td>775</td>
<td>783</td>
<td>782</td>
<td>725</td>
<td>733</td>
<td>749</td>
<td>769</td>
<td>660</td>
<td>691</td>
<td>715</td>
<td>736</td>
</tr>
<tr>
<td>Kınıyakat katkı</td>
<td>-</td>
<td>3.0</td>
<td>4.5</td>
<td>2.1</td>
<td>4.3</td>
<td>4.6</td>
<td>7.0</td>
<td>4.6</td>
<td>7.6</td>
<td>9.4</td>
<td>7.5</td>
<td>7.6</td>
</tr>
<tr>
<td>S/B</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Deney Sonuçları ve Tartışma

Katılımcı L, M ve H kodlu kâğıtla thrilled beton karışımmanın taze beton propertiesini araştırdıktan sonra Tablo 3 ve 4'de verildiği üzere beton birim hacim ağırlığı L katılımcısı seride 2323-2409 kg/m³ arasında değişmektedir. M katılımcısı seride 2305-2350 kg/m³ arasında değişmektedir. H katılımcısı ise ise 2279-2332 kg/m³ arasında değişmektedir.

L katılımcısı yüksek oranlı kullanılar halinde aşırı hava sürükleyebileceği konumdaşlıkla 0.9 kg/m³ tavladaşdır [9]. Buna nedeni kâğıttan kullanılan katıların lignosulfonat icermesidir. Lignosulfonat yüzey aktif bir kimiyaal olup, çimento hamuru içinde kireç şekilli hava katarctları oluşmasına yol açar.

M katılımcısı ise belirli kullanım oranına kadar hava içeriğini artırma, masa daha yüksek kullanılmak oranlarında hava içeriğinde dâafs meydana gelmektedir. H katılımcı betonlarda da benzer durum görülmüşür.
<table>
<thead>
<tr>
<th>LK</th>
<th>2323</th>
<th>190</th>
<th>1.2</th>
<th>22</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 0.6</td>
<td>2409</td>
<td>200</td>
<td>1.5</td>
<td>22</td>
<td>22.5</td>
</tr>
<tr>
<td>L 1.0</td>
<td>2388</td>
<td>190</td>
<td>2.2</td>
<td>21</td>
<td>21.5</td>
</tr>
<tr>
<td>L 1.5</td>
<td>2361</td>
<td>195</td>
<td>2.8</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>M 1.0</td>
<td>2323</td>
<td>190</td>
<td>1.3</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>M 0.4</td>
<td>2305</td>
<td>200</td>
<td>2.2</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>M 1.2</td>
<td>2290</td>
<td>200</td>
<td>2.6</td>
<td>29</td>
<td>10.5</td>
</tr>
<tr>
<td>M 1.8</td>
<td>2350</td>
<td>190</td>
<td>2.5</td>
<td>29</td>
<td>10.5</td>
</tr>
<tr>
<td>H 1.0</td>
<td>2275</td>
<td>200</td>
<td>1.2</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>H 0.4</td>
<td>2290</td>
<td>220</td>
<td>2.7</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>H 1.2</td>
<td>2326</td>
<td>240</td>
<td>2.7</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>H 1.8</td>
<td>2332</td>
<td>220</td>
<td>2.6</td>
<td>29</td>
<td>21</td>
</tr>
</tbody>
</table>

Tablo 3. LS katkılı taze betonun özellikleri

L serisi betonların farklı oranlarda kullanılıp ile ele edilen su kesme miktarları ve basınç dayanımı gelişimleri Şekil 2 ve 3’de görlmektedir. L katkısının su kesme performansını belirlemek üzere hazırlanmış kontrol betonu 150 mm çökme değerine sahip olup karışım suyu miktarı 2.29 kg/m³’rur. 28 günlük kâp basınç dayanımı 22 MPa olup yaklaşık C18 beton sınıfını teşkil etmektedir.

![Şekil 2](image)

Şekil 2: L serisi betonlarının su kesme oranları

L katkısının %0.6 oranında kullanılarak hâlde 200 mm çökme değeri elde edilmiştir. Ayrıca kullanılan karışım suyu 214 kg/m³’e düşmüşdür. Yani %0-7 oranında su kesilmişdir. Aynı zamanda 28 günlük basınç dayanımı da 24 MPa’a yükselmiştir. Katkı dozajı %1.5’e çıkarıldığında su kesme oranı %16’ya yükselmiştir.
105 mm çökme değeri için gerekli karışım suyu da 192 kg/m³'e düşmüyor. Bu da 28 günlik basınç dayanımı 32 MPa'ya yükseldiği olur, yaklaşık C25 beton sınıfı tensil etmektedir.

![Diagram](image)

Şekil 3. L serisi betonların basınç dayanımı gelişmeleri

M serisi betonların farklı oranlarda kullanıma ele edilen su kesme miktarları ve basınç dayanımı gelişmeleri **Şekil 4 ve 5** de görülmektedir. M katlosunun su kesme performansını belirlemek üzere hazırlanan kontrol betonu 190 mm çökme değeri sahip olup karışım suyu miktarı 246 kg/m³'tür. 28 günlük küp basınç dayanımı 28 MPa olup yaklaşık 0.75 beton sınıfı tensil etmektedir.

![Diagram](image)

Şekil 4. M serisi betonların su kesme oranları

196
M katkılarının %0.6 oranında kullanılması halinde 200 mm çökme değeri elde edilemek için kullanılan karışım suyu 229 kg/m³'e düşmüştür. Yani %6-7 oranında su kesilmiştir. Ayrıca zamanla 28 günlük basınç dayanımı da 32 MPa'ya yükselmiştir. Katki dozajı %1.8'e çıkarıldığıında su kesme oranı %23'e yükselmiş, 180 mm çökme değeri için gerekli karışım suyu da 189 kg/m³'e düşmüştür. Bu da bağlı olarak 28 günlük basınç dayanımı 47 MPa'a yükselmiş olup yaklaşık C40 beton sınıfini tercih etmektedir.

Şekil 5. M serisi betonların basınç dayanımı gelişmeleri

H katılı betonların farklı oranlarda kullanıldığı ile elde edilen su kesme miktarları ve basınç dayanımı gelişmeleri Şekil 6 ve 7'de görülmektedir. H katkılarının su kesme performansını belirlemek üzere hazırlanmış kontrol betonu 200 mm çökme değeriine sahip olup karışım suyu miktan 276 kg/m³'tür. 28 günlük kıp basınç dayanımı 28 MPa olup yaklaşık C25 beton sınıfini tercih etmektedir.

Şekil 6. H serisi betonların su kesme oranları:
H katkısının %0.8 oranında kullanılması halinde 220 mm çökme değeri elde edebilmek için kullanılan karışım suyu 213 kg/m³'e düşmüştür. Yanı %19.7 oranında su kesilmiştir. Aynı zamanda 28 günlük basınç dayanımı da 41 MPa'a yükselmiştir. Katki dozaju %1.8'e çıkarıldığında su kesme oranı %31.5'e yükselmiş, 220 mm çökme değeri için gereklı karışım suyu da 174 kg/m³'e düşmüştür. Buna bağlı olarak 28 günlük basınç dayanımı 65 MPa'a yükselmiş olup yaklaşık C50 beton sınıfını tetesil etmektedir.

![Diagram](image)

Sekil 7. H serisi betonların basınç dayanımı gelişimleri

SONUÇ

Yapılan deneySEL çalışmalara bağlı olarak aşağıdaki sonuçlar elde edilmiştir:

1. Artışkanllaştırıcı katkıların oranı, beton dizayn ile değişmekte beraber kullanım oranı azdırça daha çok su azaltığı görülmüştür. Katki miktarını belirli bir değere kadar artırıldığında daha fazla su azaltılmasını endişeleri, basınç dayanım ve su azaltına miktarlaryla oranlı olarak artış göstermektedir. Çökme değeri sabit tutularken etkisi tam beton karışımında; L katkısının %1.5 oranında kullanılması durumunda kontrol betonuna kıyasla %16 su kesme ve 28 günlük basınç dayanımı %50 artış, M katkısının %1.8 oranında kullanılması durumunda kontrol betonuna kıyasla %23 su kesme ve 28 günlük basınç dayanımıda %70 artış, H katkısının %1.8 oranında kullanılması durumunda kontrol betonuna kıyasla %31 su kesme ve 28 günlük basınç dayanımıda %140 artış elde edilmştir.

3. L katılım betonu hava %6'si katı miktan arttıkça artarken, M ve H katılım betonlarında katı miktanın arttığından hava içi sihirli belirgin bir dozaj kadar artış daha sonra azalmiştir. Bu durum özellikle H katılım betonlarında daha belirgindir.

TESEKKÜR