PROBLEMS
(RECTILINEAR MOTION)
1. A ball is thrown vertically upward with an initial speed of 25 m/s from the base A of a 15-m cliff. Determine the distance h by which the ball clears the top of the cliff and the time t after release for the ball to land at B. Also, calculate the impact velocity v_B. Neglect air resistance and the small horizontal motion of the ball.
2. A motorcycle patrolman starts from rest at A two seconds after a car, speeding at the constant rate of 120 km/h, passes point A. If the patrolman accelerates at the rate of 6 m/s\(^2\) until he reaches his maximum permissible speed of 150 km/h, which he maintains, calculate the distance s from point A to the point at which he overtakes the car.
3. The body falling with speed strikes v_o and maintains contact with the platform supported by a nest of springs. The acceleration of the body after impact is $a = g - cy$ where c is a positive constant and y is measured from the original platform position. If the maximum compression of the springs is observed to be y_m, determine the constant c.
4. A test projectile is fired horizontally into a viscous liquid with a velocity \(v_0 \). The retarding force is proportional to the square of the velocity, so that the acceleration becomes \(a = -kv^2 \). Derive expressions for the distance \(D \) traveled in the liquid and the corresponding time \(t \) required to reduce the velocity to \(v_0/2 \). Neglect any vertical motion.
5. The preliminary design for a rapid-transit system calls for the train velocity to vary with time as shown in the plot as the train runs the 3.2 km between stations A and B. The slopes of the cubic transition curves (which are of form \(a+bt+ct^2+dt^3 \)) are zero at the end points. Determine the total run time \(t \) between the stations and the maximum acceleration.
6. The brake mechanism shown in the figure is composed of a piston moving in a fixed cylinder filled with oil. When the brake pedal is pressed while the vehicle moves with a speed \(v_0 \), the piston moves, oil passes through the channels inside the piston and the vehicle slows down in proportion to its speed, \(a = -kv \). Determine a) \(v \) in terms of \(t \), b) \(x \) in terms of \(t \), c) \(v \) in terms of \(x \). Also construct the related graphics.
7. A particle moves along the y axis with an acceleration given by \(a(t)=5\sin \omega t \text{ cm/s}^2 \) where \(\omega=0.7 \text{ rad/s} \). Initially when \(t=0 \), the particle is 2 cm above the origin and is moving downward with a speed of 5 cm/s.

a) Determine the velocity and position of the particle as functions of time.

b) Show the position, velocity and acceleration on a graph for the interval of \(t=0 \) and \(t=4 \text{ s} \).

c) Determine the displacement \(d \) of the particle between \(t=0 \) and \(t=4 \text{ s} \).

d) Determine the total distance \(s \) traveled by the particle between \(t=0 \) and \(t=4 \text{ s} \).