CHAPTER 6

MECHANICS OF MATERIALS

Ferdinand P. Beer
E. Russell Johnston, Jr.
John T. DeWolf

Lecture Notes:
J. Walt Oler
Texas Tech University

Shearing Stresses in Beams and Thin-Walled Members

© 2002 The McGraw-Hill Companies, Inc. All rights reserved.
Introduction

Shear on the Horizontal Face of a Beam Element

Example 6.01

Determination of the Shearing Stress in a Beam

Shearing Stresses τ_{xy} in Common Types of Beams

Further Discussion of the Distribution of Stresses in a ...

Sample Problem 6.2

Longitudinal Shear on a Beam Element of Arbitrary Shape

Example 6.04

Shearing Stresses in Thin-Walled Members

Plastic Deformations

Sample Problem 6.3

Unsymmetric Loading of Thin-Walled Members

Example 6.05

Example 6.06
Introduction

• Transverse loading applied to a beam results in normal and shearing stresses in transverse sections.

• Distribution of normal and shearing stresses satisfies

\[F_x = \int \sigma_x dA = 0 \quad M_x = \int (y \tau_{xz} - z \tau_{xy}) dA = 0 \]
\[F_y = \int \tau_{xy} dA = -V \quad M_y = \int z \sigma_x dA = 0 \]
\[F_z = \int \tau_{xz} dA = 0 \quad M_z = \int (-y \sigma_x) = 0 \]

• When shearing stresses are exerted on the vertical faces of an element, equal stresses must be exerted on the horizontal faces.

• Longitudinal shearing stresses must exist in any member subjected to transverse loading.
Shear on the Horizontal Face of a Beam Element

- Consider prismatic beam
- For equilibrium of beam element
 \[\sum F_x = 0 = \Delta H + \int_A^x (\sigma_D - \sigma_D) \, dA \]
 \[\Delta H = \frac{M_D - M_C}{I} \int_A^x y \, dA \]
- Note,
 \[Q = \int_A^x y \, dA \]
 \[M_D - M_C = \frac{dM}{dx} \Delta x = V \Delta x \]
- Substituting,
 \[\Delta H = \frac{VQ}{I} \Delta x \]
 \[q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} = \text{shear flow} \]
Shear on the Horizontal Face of a Beam Element

- Shear flow,
 \[q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} = \text{shear flow} \]

- where
 \[Q = \int \frac{y}{A} \, dA \]
 is the first moment of area above \(y_1 \)
 \[I = \int \frac{y^2}{A + A'} \, dA \]
 is the second moment of full cross section

- Same result found for lower area
 \[q' = \frac{\Delta H'}{\Delta x} = \frac{VQ'}{I} = -q' \]
 \[Q + Q' = 0 \]
 is the first moment with respect to neutral axis
 \[\Delta H' = -\Delta H \]
Example 6.01

A beam is made of three planks, nailed together. Knowing that the spacing between nails is 25 mm and that the vertical shear in the beam is \(V = 500 \text{ N} \), determine the shear force in each nail.

SOLUTION:

- Determine the horizontal force per unit length or shear flow \(q \) on the lower surface of the upper plank.
- Calculate the corresponding shear force in each nail.
Example 6.01

\[Q = A\bar{y} = (0.020 \text{ m} \times 0.100 \text{ m}) (0.060 \text{ m}) = 120 \times 10^{-6} \text{ m}^3 \]

\[I = \frac{1}{12} (0.020 \text{ m})(0.100 \text{ m})^3 + 2\left[\frac{1}{12} (0.100 \text{ m})(0.020 \text{ m})^3 + (0.020 \text{ m} \times 0.100 \text{ m})(0.060 \text{ m})^2 \right] = 16.20 \times 10^{-6} \text{ m}^4 \]

SOLUTION:

- Determine the horizontal force per unit length or shear flow \(q \) on the lower surface of the upper plank.

\[q = \frac{VQ}{I} = \frac{(500 \text{ N})(120 \times 10^{-6} \text{ m}^3)}{16.20 \times 10^{-6} \text{ m}^4} = 3704 \frac{\text{N}}{\text{m}} \]

- Calculate the corresponding shear force in each nail for a nail spacing of 25 mm.

\[F = (0.025 \text{ m})q = (0.025 \text{ m})(3704 \text{ N/m}) \]

\[F = 92.6 \text{ N} \]
The average shearing stress on the horizontal face of the element is obtained by dividing the shearing force on the element by the area of the face.

\[
\tau_{ave} = \frac{\Delta H}{\Delta A} = \frac{q \Delta x}{\Delta A} = \frac{VQ}{I} \frac{\Delta x}{t \Delta x} = \frac{VQ}{It}
\]

On the upper and lower surfaces of the beam, \(\tau_{yx} = 0\). It follows that \(\tau_{xy} = 0\) on the upper and lower edges of the transverse sections.

If the width of the beam is comparable or large relative to its depth, the shearing stresses at \(D_1\) and \(D_2\) are significantly higher than at \(D\).
Shearing Stresses τ_{xy} in Common Types of Beams

- For a narrow rectangular beam,

$$
\tau_{xy} = \frac{VQ}{Ib} = \frac{3V}{2A} \left(1 - \frac{y^2}{c^2}\right)
$$

$$
\tau_{\text{max}} = \frac{3V}{2A}
$$

- For American Standard (S-beam) and wide-flange (W-beam) beams

$$
\tau_{\text{ave}} = \frac{VQ}{It}
$$

$$
\tau_{\text{max}} = \frac{V}{A_{\text{web}}}
$$
Further Discussion of the Distribution of Stresses in a Narrow Rectangular Beam

- Consider a narrow rectangular cantilever beam subjected to load P at its free end:
 \[\tau_{xy} = \frac{3}{2} \frac{P}{A} \left(1 - \frac{y^2}{c^2}\right) \quad \sigma_x = +\frac{P_{xy}}{I} \]

- Shearing stresses are independent of the distance from the point of application of the load.

- Normal strains and normal stresses are unaffected by the shearing stresses.

- From Saint-Venant’s principle, effects of the load application mode are negligible except in immediate vicinity of load application points.

- Stress/strain deviations for distributed loads are negligible for typical beam sections of interest.
A timber beam is to support the three concentrated loads shown. Knowing that for the grade of timber used,

\[\sigma_{all} = 1800 \text{ psi} \quad \tau_{all} = 120 \text{ psi} \]

determine the minimum required depth \(d \) of the beam.

SOLUTION:

- Develop shear and bending moment diagrams. Identify the maximums.
- Determine the beam depth based on allowable normal stress.
- Determine the beam depth based on allowable shear stress.
- Required beam depth is equal to the larger of the two depths found.
Sample Problem 6.2

SOLUTION:

Develop shear and bending moment diagrams. Identify the maximums.

\[V_{\text{max}} = 3 \text{kips} \]
\[M_{\text{max}} = 7.5 \text{kip} \cdot \text{ft} = 90 \text{kip} \cdot \text{in} \]
Sample Problem 6.2

- Determine the beam depth based on allowable normal stress.
 \[\sigma_{all} = \frac{M_{\text{max}}}{S} \]
 \[1800 \text{ psi} = \frac{90 \times 10^3 \text{ lb} \cdot \text{in.}}{(0.5833 \text{ in.})d^2} \]
 \[d = 9.26 \text{ in.} \]

- Determine the beam depth based on allowable shear stress.
 \[\tau_{all} = \frac{3 V_{\text{max}}}{2 A} \]
 \[120 \text{ psi} = \frac{3 \times 3000 \text{ lb}}{2 (3.5 \text{ in.})d} \]
 \[d = 10.71 \text{ in.} \]

- Required beam depth is equal to the larger of the two.
 \[d = 10.71 \text{ in.} \]
Longitudinal Shear on a Beam Element of Arbitrary Shape

- We have examined the distribution of the vertical components τ_{xy} on a transverse section of a beam. We now wish to consider the horizontal components τ_{xz} of the stresses.

- Consider prismatic beam with an element defined by the curved surface CDD’C’.

\[\sum F_x = 0 = \Delta H + \int_a \left(\sigma_D - \sigma_C \right) dA \]

- Except for the differences in integration areas, this is the same result obtained before which led to

\[\Delta H = \frac{VQ}{I} \Delta x \]

\[q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} \]
Example 6.04

A square box beam is constructed from four planks as shown. Knowing that the spacing between nails is 1.5 in. and the beam is subjected to a vertical shear of magnitude $V = 600$ lb, determine the shearing force in each nail.

SOLUTION:

- Determine the shear force per unit length along each edge of the upper plank.

- Based on the spacing between nails, determine the shear force in each nail.
Example 6.04

SOLUTION:

• Determine the shear force per unit length along each edge of the upper plank.

\[q = \frac{VQ}{I} = \frac{(600 \text{ lb})(4.22 \text{ in}^3)}{27.42 \text{ in}^4} = 92.3 \text{ lb in} \]

\[f = \frac{q}{2} = 46.15 \frac{\text{lb}}{\text{in}} \]

= edge force per unit length

• Based on the spacing between nails, determine the shear force in each nail.

\[F = f \ell = \left(46.15 \frac{\text{lb}}{\text{in}}\right)(1.75 \text{ in}) \]

\[F = 80.8 \text{ lb} \]

For the upper plank,

\[Q = A'y = (0.75 \text{ in})(3 \text{ in})(1.875 \text{ in}) \]

= 4.22 in³

For the overall beam cross-section,

\[I = \frac{1}{12}(4.5 \text{ in})^3 - \frac{1}{12}(3 \text{ in})^3 \]

= 27.42 in⁴
Shearing Stresses in Thin-Walled Members

- Consider a segment of a wide-flange beam subjected to the vertical shear V.
- The longitudinal shear force on the element is
 \[\Delta H = \frac{VQ}{I} \Delta x \]
- The corresponding shear stress is
 \[\tau_{zx} = \tau_{xz} \approx \frac{\Delta H}{t \Delta x} = \frac{VQ}{It} \]
- Previously found a similar expression for the shearing stress in the web
 \[\tau_{xy} = \frac{VQ}{It} \]
- NOTE: $\tau_{xy} \approx 0$ in the flanges
 \[\tau_{xz} \approx 0 \] in the web
Shearing Stresses in Thin-Walled Members

- The variation of shear flow across the section depends only on the variation of the first moment.
 \[q = \tau t = \frac{VQ}{I} \]

- For a box beam, \(q \) grows smoothly from zero at A to a maximum at C and C’ and then decreases back to zero at E.

- The sense of \(q \) in the horizontal portions of the section may be deduced from the sense in the vertical portions or the sense of the shear \(V \).
Shearing Stresses in Thin-Walled Members

- For a wide-flange beam, the shear flow increases symmetrically from zero at A and A', reaches a maximum at C and the decreases to zero at E and E'.

- The continuity of the variation in q and the merging of q from section branches suggests an analogy to fluid flow.
Plastic Deformations

- Recall: \(M_Y = \frac{I}{c} \sigma_Y = \text{maximum elastic moment} \)
- For \(M = PL < M_Y \), the normal stress does not exceed the yield stress anywhere along the beam.
- For \(PL > M_Y \), yield is initiated at \(B \) and \(B' \). For an elastoplastic material, the half-thickness of the elastic core is found from

\[
P x = \frac{3}{2} M_Y \left(1 - \frac{1}{3} \frac{y_Y^2}{c^2}\right)
\]

- The section becomes fully plastic \((y_Y = 0)\) at the wall when

\[
PL = \frac{3}{2} M_Y = M_p
\]
- Maximum load which the beam can support is

\[
P_{\text{max}} = \frac{M_p}{L}
\]
Plastic Deformations

- Preceding discussion was based on normal stresses only.
- Consider horizontal shear force on an element within the plastic zone,
 \[\Delta H = -(\sigma_C - \sigma_D) dA = -(\sigma_Y - \sigma_Y) dA = 0 \]

Therefore, the shear stress is zero in the plastic zone.

- Shear load is carried by the elastic core,
 \[\tau_{xy} = \frac{3}{2} \frac{P}{A'} \left(1 - \frac{y^2}{y_Y^2}\right) \]
 where \(A' = 2by_Y \)
 \[\tau_{\max} = \frac{3}{2} \frac{P}{A'} \]

- As \(A' \) decreases, \(\tau_{\max} \) increases and may exceed \(\tau_Y \).
Sample Problem 6.3

SOLUTION:

• For the shaded area,
 \[Q = (4.31\text{ in})(0.770\text{ in})(4.815\text{ in}) \]
 \[= 15.98\text{ in}^3 \]

• The shear stress at \(a \),
 \[\tau = \frac{VQ}{It} = \frac{(50\text{ kips})(15.98\text{ in}^3)}{(394\text{ in}^4)(0.770\text{ in})} \]
 \[\tau = 2.63\text{ ksi} \]

Knowing that the vertical shear is 50 kips in a W10x68 rolled-steel beam, determine the horizontal shearing stress in the top flange at the point \(a \).
Unsymmetric Loading of Thin-Walled Members

- Beam loaded in a vertical plane of symmetry deforms in the symmetry plane without twisting.

$$\sigma_x = -\frac{My}{I} \quad \tau_{ave} = \frac{VQ}{It}$$

- Beam without a vertical plane of symmetry bends and twists under loading.

$$\sigma_x = -\frac{My}{I} \quad \tau_{ave} \neq \frac{VQ}{It}$$
Unsymmetric Loading of Thin-Walled Members

- If the shear load is applied such that the beam does not twist, then the shear stress distribution satisfies

\[\tau_{\text{ave}} = \frac{VQ}{It} \quad V = \int_{B}^{D} q \, ds \quad F = \int_{A}^{B} q \, ds = -\int_{E}^{D} q \, ds = -F' \]

- \(F \) and \(F' \) indicate a couple \(Fh \) and the need for the application of a torque as well as the shear load.

\[Fh = Ve \]

- When the force \(P \) is applied at a distance \(e \) to the left of the web centerline, the member bends in a vertical plane without twisting.
Example 6.05

- Determine the location for the shear center of the channel section with \(b = 4 \text{ in.} \), \(h = 6 \text{ in.} \), and \(t = 0.15 \text{ in.} \)

\[
e = \frac{F h}{I}
\]

- where

\[
F = \int_0^b q \, ds = \int_0^b VQ \, ds = \frac{V}{I} \int_0^b st \, h \, ds = \frac{Vthb^2}{4I}
\]

\[
I = I_{\text{web}} + 2I_{\text{flange}} = \frac{1}{12}th^3 + 2\left[\frac{1}{12}bt^3 + bt\left(\frac{h}{2}\right)^2 \right] \\
\approx \frac{1}{12}th^2(6b + h)
\]

- Combining,

\[
e = \frac{b}{2 + \frac{h}{3b}} = \frac{4\text{in.}}{2 + \frac{6\text{in.}}{3(4\text{in.})}} \quad e = 1.6\text{in.}
\]
Example 6.06

- Determine the shear stress distribution for $V = 2.5$ kips.

$$\tau = \frac{q}{t} = \frac{VQ}{It}$$

- Shearing stresses in the flanges,

$$\tau = \frac{VQ}{It} = \frac{V}{It} \left(\frac{st}{h}\right) = \frac{Vh}{2I}$$

$$\tau_B = \frac{Vhb}{2\left(\frac{1}{12}th^2\right)(6b + h)} = \frac{6Vb}{th(6b + h)} = \frac{6(2.5 \text{ kips})(4 \text{ in})}{(0.15 \text{ in})(6 \text{ in})(6 \times 4 \text{ in} + 6 \text{ in})} = 2.22 \text{ ksi}$$

- Shearing stress in the web,

$$\tau_{\text{max}} = \frac{VQ}{It} = \frac{V\left(\frac{1}{8}ht\right)(4b + h)}{\frac{1}{12}th^2(6b + h)t} = \frac{3V(4b + h)}{2th(6b + h)} = \frac{3(2.5 \text{ kips})(4 \times 4 \text{ in} + 6 \text{ in})}{2(0.15 \text{ in})(6 \text{ in})(6 \times 6 \text{ in} + 6 \text{ in})} = 3.06 \text{ ksi}$$