Example Let \sim_r be the equivalence relation: "$a \sim_r b$ iff $ba^{-1} \in H$" where H is a subgroup of G.
Then let’s calculate $[a]_{\sim_r} = \{b \in G : a \sim_r b\} = ...$

Definition: (Coset) Let H be a subgroup of a group G. The subset (Not necessarily a subgroup) $aH = \{ah|h \in H\}$ of G is the left coset of H containing ‘a’, while the subset $Ha = \{ha|h \in H\}$ is the right coset of H containing ‘a’.

Theorem: Let H be a subgroup of G. Then

1-) Any left coset $aH \neq H$, if $a \notin H$.

2-) Any two left cosets of H are either identical or disjoint. That is either $aH = bH$ or $aH \cap bH = \emptyset$.

3-) G is the union of the left cosets of H. That is $G = \bigcup_{a \in G} aH$.

Proof.

1-) By contradiction, suppose

2-) Suppose that $aH \cap bH \neq \emptyset$, then we will show that $aH = bH$.

Take any ah from aH.
Converse is your exercise.

3-Take any \(g \in G \), then \(g = ge \in gH \)

Remark. Note that for abelian groups, the cosets are \(a + H \) and \(H + a \).

Proposition: If \(G \) is an abelian group, for any subgroup \(H \) of \(G \) and for any \(a \in G \),
\[a + H = H + a. \]
Proof:
Let’s take any \(a + h \) from \(a + H \) where \(h \in H \), then...

Converse is your exercise
Lemma: Let G be a group and H be a subgroup of G. Then if we consider a left(right) coset aH of H in G, we say

$$|aH| = |H| = |Ha|.$$

Proof: Let's define a 1-1 and onto map between sets aH and H. We define $f : aH \mapsto H$ by $f(ah) = h$.

f is well defined:

f is 1-1:

f is onto:

Example: Exhibit the left (and right) cosets of the subgroup $3\mathbb{Z}$ of \mathbb{Z}.

Since \mathbb{Z} is abelian, right cosets are same as left cosets.
Exercises

1. Find all cosets of the subgroup $4\mathbb{Z}$ of \mathbb{Z}.

2. Find all cosets of the subgroup $4\mathbb{Z}$ of $2\mathbb{Z}$.

3. Find the partition of \mathbb{Z}_8 into cosets of the subgroup $\langle 2 \rangle$.

4. Find the partition of \mathbb{Z}_{36} into cosets of the subgroup $\langle 18 \rangle$.
5. Consider S_3 with elements $\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $\rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$,

$\mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $\mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $\mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

and table

<table>
<thead>
<tr>
<th></th>
<th>ρ_0</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>μ_1</th>
<th>μ_2</th>
<th>μ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_0</td>
<td>ρ_0</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>μ_1</td>
<td>μ_2</td>
<td>μ_3</td>
</tr>
<tr>
<td>ρ_1</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_0</td>
<td>μ_3</td>
<td>μ_1</td>
<td>μ_2</td>
</tr>
<tr>
<td>ρ_2</td>
<td>ρ_2</td>
<td>ρ_0</td>
<td>ρ_1</td>
<td>μ_2</td>
<td>μ_3</td>
<td>μ_1</td>
</tr>
<tr>
<td>μ_1</td>
<td>μ_1</td>
<td>μ_2</td>
<td>μ_3</td>
<td>ρ_0</td>
<td>ρ_1</td>
<td>ρ_2</td>
</tr>
<tr>
<td>μ_2</td>
<td>μ_2</td>
<td>μ_3</td>
<td>μ_1</td>
<td>ρ_2</td>
<td>ρ_0</td>
<td>ρ_1</td>
</tr>
<tr>
<td>μ_3</td>
<td>μ_3</td>
<td>μ_1</td>
<td>μ_2</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_0</td>
</tr>
</tbody>
</table>

Consider the cyclic subgroup $< \mu_1 >$. Find the partition into left cosets by $< \mu_1 >$. Then find the partition into right cosets by $< \mu_1 >$.
PART 2

Theorem: (Lagrange’s Theorem) Let H be a subgroup of a finite group G, then the order of H is a divisor of the order of G.

Proof: Let $g_1H, g_2H, ..., g_mH$ be all distinct left cosets of H in G(we could also do it for right cosets). Since G is finite, there could be only finite number of such cosets. (Why?)

Because the cosets are equivalence classes, $g_1H \cup g_2H \cup ... \cup g_mH = G$. Since cosets are equivalence classes, they are distinct, i.e. $g_iH \cap g_jH = \emptyset$ if $i \neq j$. Therefore

$$|g_1H| + |g_2H| + ... + |g_mH| = |G|.$$ But by using the preceding Lemma, we say

$$|H| + |H| + ... + |H| = |G|,$$ that is $m.|H| = |G|$. Therefore $|H|$ divides $|G|$.

Remark. For infinite groups, the theorem would be nonsense.

Example: \mathbb{Z}_6 has no subgroup of order 4.

Corollary: The order of an element of a finite group divides the order of the group.

Proof:

Corollary: Let G be a group of order m, then for any $g \in G$, $g^m = e$.

Proof:
Example: Let’s see above corollary in \mathbb{Z}_6.

Definition: (Index) Let H be a subgroup of a group G. The number of left cosets of H in G is the index $(G : H)$ of H in G.

Proposition: Let G be a finite group, then $(G : H)$ is finite and $(G : H) = \frac{|G|}{|H|}$.

Proof:

Remark: According to the Lagrange Theorem, for finite groups, orders of all subgroups divide order of the group. But can we say the converse?

That is, if $|G| = m$, then for any $n \in \mathbb{Z}^+$ with $n|m$, can we find a subgroup H of G such that $|H| = n$?

No! For instance, A_4 has no subgroup of order 6. However, for all abelian groups, the answer is Yes!.
Math 3055 (Algebra I)
Exercises Week 4: Cosets and Lagrange Theorem

1. Every group of prime order is cyclic. (Hint: Take a cyclic subgroup and consider with Lagrange Theorem.)

2. Let G be a group of order pq, where p and q are prime numbers. Show that every proper subgroup of G is cyclic.

3. Find all cosets of the subgroup $<4>$ of \mathbb{Z}_{12}.
4. Suppose that H and K are subgroups of a group G such that $K \leq H \leq G$ and suppose $(H : K)$ and $(G : H)$ are both finite, then show that $(G : K) = (G : H)(H : K)$.

5. Find the index of $<3>$ in the group \mathbb{Z}_{24}.

6. Let H be a subgroup of a group G such that $g^{-1}hg \in H$ for all $g \in G$ and all $h \in H$. Show that every left coset gH is the same as the right coset Hg.

7. Show that if H is a subgroup of index 2 in a finite group G, then every left coset of H is equivalent to right coset of H.