PLANE KINETICS OF RIGID BODIES (PROBLEMS)
1. In the mechanism shown, the flywheel has a mass of 50 kg and radius of gyration about its center of 160 mm. Uniform connecting rod AB has a mass of 10 kg. Mass of the piston B is 15 kg. Flywheel is rotating by the couple T ccw at a constant rate 50 rad/s. When $\theta=53^\circ$ determine the angular velocity and angular acceleration of the connecting rod AB (ω_{AB} ve α_{AB}). What are the forces transmitted by the pins at A and B? Neglect the friction. Take $\sin 53=0.8$, $\cos 53=0.6$.

![Diagram of mechanism with flywheel, connecting rod AB, and piston B with angle θ.]
2. Crank \mathbf{AB} rotates with an angular velocity of $\omega_{AB} = 6 \text{ rad/s}$ and angular acceleration of $\alpha_{AB}=2 \text{ rad/s}^2$, both in counterclockwise direction. Roller \mathbf{C} can slide along the circular slot within the fixed plate. For the position shown, angular velocity and angular acceleration of rod \mathbf{BC} are $\omega_{BC} =2.9 \text{ rad/s}$ (counterclockwise) and $\alpha_{BC}=37.5 \text{ rad/s}^2$ (counterclockwise). The masses of uniform bars \mathbf{AB} and \mathbf{BC} are $m_{AB}=2 \text{ kg}$ and $m_{BC}=5 \text{ kg}$. Mass of the roller \mathbf{C} and friction can be neglected. Determine the reactions supported by the pins \mathbf{B} and \mathbf{C}?
3. Member \(AO \) is rotating at a **constant** angular velocity of \(\omega_{AO} = 5 \text{ rad/s} \) in ccw direction by a torque \(T = 10 \text{ N\cdotm} \). The mass of the uniform slender bar \(AO \) is 2 kg. Bar \(AB \) has a mass of 5 kg and a radius of gyration with respect to its mass center \(G \) of 400 mm. For the position shown, angular velocity and angular acceleration of rod \(BC \) are \(\omega_{AB} = 1.19 \text{ rad/s} \) (counterclockwise) and \(\alpha_{AB} = 11.79 \text{ rad/s}^2 \) (counterclockwise). Gear \(D \) can be assumed as a uniform thin disk with the radius of \(R = 0.3 \text{ m} \). Its mass is 8 kg and it rotates with an angular velocity of 7.93 rad/s in counterclockwise direction and an angular acceleration of 5.67 rad/s\(^2\) in clockwise direction. Determine the reactions supported by the pins \(A \) and \(B \) and contact point \(C \).
4. The masses of uniform bars AB and BC are $m_{AB} = 2$ kg and $m_{BC} = 1$ kg, respectively. Bar BC is pin connected to a fixed support at C. Bar AB is pin connected at A to a uniform wheel of radius $R = 0.50$ m and mass $m_w = 5$ kg. At the instant shown, A is vertically aligned with O, bar AB is horizontal and bar BC is vertical. For the given instant, bar BC is rotating with an angular velocity of 2 rad/s and an angular acceleration of 1.2 rad/s2, both in clockwise direction. Assuming that the wheel rolls without slipping, determine the force P that is applied to the wheel. Also determine the coefficient of friction between the wheel and the surface.
KINEMATIC ANALYSIS: VELOCITY

MEMBER BC
\[\vec{v}_B = \vec{v}_C + \vec{v}_{BC} = \vec{\omega}_{BC} \times \vec{r}_{BC} = -2\vec{k} \times (0.95\vec{j}) = 1.9\vec{i} \]

MEMBER AB
\[\vec{v}_A = \vec{v}_B + \vec{v}_{AB} = \vec{v}_B + \vec{\omega}_{AB} \times \vec{r}_{AB} = 1.9\vec{i} + \omega_{AB}\vec{k} \times (-1.25\vec{i}) = 1.9\vec{i} - 1.25\omega_{AB}\vec{j} \] (1)

WHEEL
\[\vec{v}_A = \vec{v}_D + \vec{v}_{AD} = \vec{\omega}_w \times \vec{r}_{AD} = \omega_{w}\vec{k} \times (0.95\vec{j}) = -0.95\omega_w\vec{i} \] (2)

\[(1) = (2) \]

\[\omega_w = -2 \text{ rad/s} \quad \omega_{AB} = 0 \]
\(\vec{a}_B = \vec{a}_C + \vec{a}_{B/C} = \ddot{\omega}_{BC} \times (\vec{\omega}_{BC} \times \vec{r}_{B/C}) + \vec{\alpha}_{BC} \times \vec{r}_{B/C} = -2\ddot{k} \times \left[-2\ddot{k} \times (0.95\vec{j}) \right] + (-1.2\ddot{k}) \times (0.95\vec{j}) = 1.14\ddot{i} - 3.8\ddot{j} \)

Member AB

\[\vec{a}_A = \vec{a}_B + \vec{a}_{A/B} = 1.14\ddot{i} - 3.8\ddot{j} + \alpha_{AB}\ddot{k} \times (-1.25\ddot{i}) = 1.14\ddot{i} - 3.8\ddot{j} - 1.25\alpha_{AB}\ddot{j} \quad (3) \]

Wheel

\[\vec{a}_A = \vec{a}_O + \vec{a}_{A/O} = \alpha_w(0.5\ddot{i}) + (-2\ddot{k}) \times \left[-2\ddot{k} \times (0.45\vec{j}) \right] + (-\alpha_w\ddot{k}) \times (0.45\vec{j}) = 0.5\alpha_w\ddot{i} - 1.8\ddot{j} + 0.45\alpha_w\ddot{i} \]

\[(3) = (4) \quad \alpha_w = 1.2 \text{ rad} / \text{s}^2 \quad \alpha_{AB} = -1.6 \text{ rad} / \text{s}^2 \]

\[\{ \omega_w = -2 \text{ rad} / \text{s}, \omega_{AB} = 0 \} \]
\[\ddot{a}_{G1} = -2\kappa \times \left[-2\kappa \times (0.475\,\vec{j}) \right] + (-1.2\kappa) \times (0.475\,\vec{j}) = 0.57\,\ddot{a}_x - 1.9\,\ddot{a}_y \]

MEMBER BC

\[\bar{I}_{BC} = \frac{1}{12} m_{BC} l_{BC}^2 = \frac{1}{12} (1)(0.95)^2 = 0.0752 \text{ kg} \cdot \text{m}^2 \]

\[\sum M_c = m_{BC} \ddot{a}_x d + \bar{I}_{BC} \alpha_{BC} \]

\[B_x (0.95) = (1)(0.57)(0.475) + (0.0752)(1.2) \]

\[B_x = 0.38 \text{ N} \]
\[\bar{a}_{G2} = \bar{a}_B + \bar{a}_{G2}/B = 1.14\hat{i} - 3.8\hat{j} + (-1.6\hat{k}) \times (-0.625\hat{i}) = 1.14\hat{i} - 2.8\hat{j} \]

\[\bar{a}_x = \begin{pmatrix} 1.14 \\ -2.8 \end{pmatrix} \]

\[\bar{a}_y = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[\vec{I}_{AB} \alpha_{AB} \]

\[\sum F_x = m_{BC} \bar{a}_x \quad A_x - B_x = (2)(1.14) \quad \Rightarrow \quad A_x = 2.66 \text{ N} \]

\[\bar{a}_{AB} = \frac{1}{12} m_{AB} \bar{a}_{x}^{2} = \frac{1}{12} (2)(1.25)^2 = 0.26 \text{ kg} \cdot \text{m}^2 \]

\[\sum M_B = m_{AB} \bar{a}_d + \vec{I}_{AB} \alpha_{AB} \quad \Rightarrow \quad A_y (1.25) - (2)(9.81)(0.625) = -(2)(2.8)(0.625) + (0.26)(1.6) \]

\[A_y = 7.34 \text{ N} \]

\[\sum F_y = m_{BC} \bar{a}_y \]

\[A_y - B_y - m_{AB}g = (2)(-2.8) \]

\[7.34 - B_y - (2)(9.81) = (2)(-2.8) \]

\[\Rightarrow \quad B_y = -6.68 \text{ N} \]
\[
\vec{a}_o = \vec{a} = (1.2) (0.5) \vec{i} = 0.6 \vec{i}
\]

\[
\vec{I}_w = \frac{1}{2} m_w r_w^2 = \frac{1}{2} (5)(0.5)^2 = 0.625 \text{ kg} \cdot \text{m}^2
\]

WHEEL

FBD

- \[A_x, A_y\]
- \[m_w g\]
- \[P\]
- \[O, A, D\]

KD

\[
\begin{align*}
\sum M_D &= m_w \vec{a} d + \vec{I}_w \alpha_w \\
- A_x (0.95) + P (0.5) &= (5)(0.6)(0.5) + (0.625)(1.2) \\
P &= 9.554 \text{ N}
\end{align*}
\]

\[
\begin{align*}
\sum F_x &= m_w \vec{a}_x \\
- A_x + P - F_f &= (5)(0.6) \\
F_f &= 3.894 \text{ N}
\end{align*}
\]

KINETICS

\[
\begin{align*}
\sum F_y &= 0 \\
- A_y + N - m_w g &= 0 \\
N &= 56.39 \text{ N}
\end{align*}
\]

\[
\mu = \frac{F_f}{N} = \frac{3.894}{56.39} = 0.069
\]
5. The unbalanced 20 kg wheel with the mass center at G has a radius of gyration about G of 202 mm. The wheel rolls down the 20° incline without slipping. In the position shown. The wheel has an angular velocity of 3 rad/s. Calculate the friction force F acting on the wheel at this position.
SOLUTION

“General Motion”

FBD

\[
\begin{align*}
\mathbf{F}_{f} + \mathbf{N} &= \mathbf{m} \alpha \\
\mathbf{F}_{f} &= 2.617 \text{ N} \\
\mathbf{N} &= 160.971 \text{ N}
\end{align*}
\]

KD

\[
\bar{I} = m \bar{k}^2 = 20(0.202)^2 = 0.816 \text{ kgm}^2
\]

\[
\alpha = 15.597 \text{ rad} / \text{s}^2
\]

\[
\mathbf{a}_o = \alpha r = 0.25\alpha
\]

\[
\bar{a}_G = \bar{a}_O + \bar{a}_{G/O} = -0.25\alpha \bar{i} + \alpha \bar{k} \times (-0.075\bar{i}) + 3\bar{k} \times [3\bar{k} \times (-0.075\bar{i})]
\]

\[
\bar{a}_G = (-0.25\alpha + 0.675)\bar{i} - 0.075\bar{j}
\]

\[
\begin{align*}
(\sum F_x)_{ef} &= m\bar{a}_x \\
F_f + 5\alpha &= 80.604
\end{align*}
\]

\[
\begin{align*}
(\sum F_y)_{ef} &= m\bar{a}_y \\
N - mg \cos 20 &= 20(-0.075\alpha)
\end{align*}
\]

\[
\begin{align*}
N &= 184.367 - 1.5\alpha \\
(\sum M_G)_{ef} &= \bar{I}\alpha \\
N(0.075) + F_f(0.25) &= 0.816\alpha
\end{align*}
\]